Archives de catégorie : only geology

Les deux plus grandes révolutions des espèces au cours des temps géologiques

Robert Paris, 2016


Dans l’histoire des espèces vivantes, il y a eu des périodes d’explosion de la biodiversité (comme Burgess et Ediacara). Ainsi l’explosion de biodiversité, dite de Burgess, qui a produit tous les embranchements du vivant, qui s’est déroulée à l’époque appelée le Cambrien (entre 542 et 530 Millions d’années), a suivi la disparition des animaux de l’époque appelée Ediacara (entre 635 et 541 Millions d’années).

La vie a connu de grands sauts historiques comme le passage de la vie sans oxygène à la vie fondée sur l’oxygène, de la vie unicellulaire à la vie pluricellulaire, et les grandes explosions de diversité comme celles d’Ediacara et Burgess.

Egalement : De Burgess à Franceville (Gabon) , les plus anciennes traces de pluricellulaires

Egalement : le Gabon à aube de la Vie

 

International Commission on Stratigraphy

The International Commission on Stratigraphy is the largest and oldest constituent scientific body in the International Union of Geological Sciences (IUGS). Its primary objective is to precisely define global units (systems, series, and stages) of the International Chronostratigraphic Chart that, in turn, are the basis for the units (periods, epochs, and age) of the International Geologic Time Scale; thus setting global standards for the fundamental scale for expressing the history of the Earth.

See also  Episode : Journal of International Geoscience

 

La Tectonique des Plaques : Une Révolution dans les Sciences de la Terre

Prof. (émer.) Daniel Demaiffe, Université Libre de Bruxelles, 2011


Remarquable synthèse de la tectonique des plaques

La tectonique des plaques telle que nous la comprenons actuellement rend compte de l’histoire de la Terre, aussi bien celle des océans que celle des continents, au cours des derniers 200 Ma. Cette théorie de la mobilité des masses continentales et de l’expansion des fonds océaniques permet d’expliquer l’évolution des plaques lithosphériques sur le long terme. Tuzo Wilson est le premier à avoir formalisé cette évolution (1966) en introduisant le concept de cycle, connu désormais dans la littérature sous l’appellation de cycle de Wilson. Ce cycle résume l’histoire d’un domaine océanique en une série de stades successifs: stade embryonnaire (Mer rouge), stade d’océan jeune (golfe de Basse-Californie), stade de maturité (océan Atlantique), stade de déclin (début des subductions : bassins marginaux du Pacifique), stade terminal de quasi fermeture (la Méditerranée depuis 30 Ma) et stade collisionnel (plateau du Tibet et Himalaya) aboutissant à l’amalgamation de différents blocs continentaux, à la surrection de vastes chaînes de montagnes et à la formation éventuelle de suture ophiolitique.

Des versions animées du déplacement des continents à travers les temps géologiques sont disponibles sur le web (Université de Berkeley), cf premier lien ci-dessous.
Geology : Plate Tectonics

A history of supercontinents on planet Earth

Combien de supercontinents depuis la formation de la Terre?

 

Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous

J.  Brugger, G. Feulner S. Petri  (13 January  2017)


Sixty-six million years ago, the end-Cretaceous mass extinction ended the reign of the dinosaurs. Flood basalt eruptions and an asteroid impact are widely discussed causes, yet their contributions remain debated. Modeling the environmental changes after the Chicxulub impact can shed light on this question. Existing studies, however, focused on the effect of dust or used one-dimensional, noncoupled atmosphere models. Here we explore the longer-lasting cooling due to sulfate aerosols using a coupled climate model. Depending on aerosol stratospheric residence time, global annual mean surface air temperature decreased by at least 26°C, with 3 to 16 years subfreezing temperatures and a recovery time larger than 30 years. The surface cooling triggered vigorous ocean mixing which could have resulted in a plankton bloom due to upwelling of nutrients. These dramatic environmental changes suggest a pivotal role of the impact in the end-Cretaceous extinction.


Also : How the darkness and the cold killed the dinosaurs

Fossil fuel formation: Key to atmosphere’s oxygen?

 

University of Wisconsin-Madison, December 30, 2016


For the development of animals, nothing — with the exception of DNA — may be more important than oxygen in the atmosphere. A study now links the rise in oxygen to a rapid increase in the burial of sediment containing large amounts of carbon-rich organic matter.

Also J.M. Husson and S.E. Peters, February 15, 2017


Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth and Planetary Science Letters, 2017; 460: 68 DOI: 10.1016/j.epsl.2016.12.012

Paleontologists classify mysterious ancient cone-shaped sea creatures

One branch on the tree of life is heavier as a team of scientists has determined what a bizarre group of extinct cone-shaped animals actually are. Known as hyoliths, these marine creatures evolved over 530 million years ago and are among the first known to have external skeletons. Long believed to be molluscs, a new study shows a stronger relationship to brachiopods — a group with a rich fossil record though few species living today.

Source : Paleontologists classify mysterious ancient cone-shaped sea creatures

L’enregistrement du temps en géologie : l’intuition prise en défaut (conférence)

par Alain Préat


Contrairement à l’intuition, les séries sédimentaires n’ont enregistré que très peu de temps (quelques pourcents seulement) et sont avant tout lacunaires.  Le temps non enregistré est ‘matérialisé’ par des joints ‘secs’  (= arrêts de sédimentation séparant les couches géologiques), des joints d’épaisseur (pluri)millimétrique ou des lacunes d’érosion. Il a fallu près de deux siècles pour s’en rendre compte et l’échelle des temps géologiques s’est construite sur cette erreur de bonne foi. Depuis le milieu du 20ème siècle des commissions d’abord nationales, puis internationales ont été mises

sur pied et tentent de corriger les nombreuses incohérences en proposant de nouvelles coupes géologiques de référence, connues en tant que stratotypes ou limitotypes. L ‘échelle est actualisée tous les quatre ans  et publiée dans le site international de stratigraphy.org.

La conférence présentée  (dans diverses institutions universitaires et à l’Académie royale de Belgique) se veut un historique du problème et intègre les travaux les plus récents en ce domaine. Comme dans beaucoup d’autres disciplines (physique avec’ l’éther’, biologie avec ‘la génération spontanée’, chimie avec ‘le phlogistique’ …), la géologie s’est établie à partir de biais (‘les séries ont enregistré 100% du temps géologique’ )… qui mettent du temps pour être d’abord compris, puis résolus. Travail jamais fini…

En conclusion, vu l’absence d’enregistrement significatif du temps dans les séries géologiques, on peut considérer celles-ci comme des ‘gruyères temporels’ et la plupart du temps il ne se passe donc rien!

Egalement se reporter aux difficultés rencontrées pour déterminer l’âge de la Terre.

 

Les prophéties hallucinatoires de la Pythie de Delphes expliquées par la géologie

par Alain Préat

La Pythie de Delphes, une prêtresse de l’Antiquité grecque, a fortement marqué les esprits des pèlerins des VIIème et VIème siècles avant Jésus Christ par ses prophéties hallucinatoires. L’oracle, qui portait tantôt sur des faits de guerre, tantôt sur des questions plus personnelles ne faisait pas toujours l’unanimité, mais là n’est pas le plus important… Ce qui constituait une ‘énigme’ en ces temps reculés et jusqu’il y a peu, était le fait que la ou les Pythies entraient en transe dans la grotte, année après année, avec une régularité de métronome. Comment cela était-il possible, y avait-il supercherie, manipulation ? La prêtresse jouait-elle un rôle en accord avec les prêtres… ? Ces questions légitimes furent régulièrement posées tout au long de l’Histoire et finalement, il y a près d’une vingtaine d’années, c’est la géologie qui apporta une solution à cette intrigue. 

Les biominéraux microbiens : des gisements terrestres à l’exobiologie

D. Gillan (U. Mons) et A. Préat (ULB)

En raison de la toxicité des métaux lorsque ceux-ci sont en trop grande concentration dans l’environnement, le monde cellulaire a développé toute une série de mécanismes de résistance qui commencent à être bien connus chez les bactéries. Certains de ces mécanismes produisent des minéraux pouvant alors être qualifiés de biominéraux. De nombreux biominéraux ont ainsi été identifiés dans le monde bactérien. Cela va de la calcite aux oxydes de fer et de manganèse en passant par le phosphate de plomb et d’uranium. L’intérêt de bien connaître les processus de biominéralisation microbienne réside dans le fait qu’ils peuvent servir de biosignature. En effet, lesbiominéraux peuvent être préservés au cours des temps géologiques alors que les cellules à basede carbone se décomposent beaucoup plus rapidement.

La bonne connaissance de la structure de ces biominéraux nous offre un outil précieux qui pourrait être utilisé dans le cadre de la recherche de la vie sur d’autres planètes. Sur terre, l’activité des microorganismes a conduit depuis 3,7 milliards d’années à la formation de gisements minéraux encore exploités. De nombreux exemples sont connus comme les fameux dépôts rubanés de fer (« BIF ») précambriens, les stromatolithes précambriens exploités par les cimentiers en Afrique, les « marbres rouges » mésozoïques européens dont la teinte liée à des ferro-bactéries sont utilisés depuis des siècles par les architectes, les gisements d’or d’Afrique du Sud plus riches grâce à la médiation bactérienne, certains gisements de plomb, de zinc, de nickel, etc. Tous les indices biologiques laissés dans ces bio-gisements suite aux interactions de microbes et minéraux seront parmi les premiers qui nous révèleront des traces de vie sur d’autres planètes.

Gisements supergéants disparus : comment se forme le pétrole du Précambrien

par Alain Préat

Des formations et migrations d’hydrocarbures ont été mises en évidence il y a 3,25 Ga (milliards d’années) dans l’Archéen en Australie et il y a 2,45 Ga au Canada. Mais l’un des plus beaux cas est celui d’un gisement supergéant de 5 milliards de barils (qui auraient été récupérables) à partir d’une formation du Paléoprotérozoïque (± 2,1-2,0 Ga) affleurant sur 9 000 km2 près du lac de Onega dans le NO de la Russie, au sud de la Mer de Barents. Le pétrole et presque tous les gaz sont liés à l’évolution de la matière organique au cours de l’enfouissement des séries géologiques à des profondeurs de quelques kilomètres (< 6 km). Au-delà, tous les hydrocarbures sont perdus, transformés en graphite (carbone pur) sous l’effet de températures et de pressions trop élevées. Le processus qui conduit à la formation d’un gisement d’hydrocarbures est long et comporte plusieurs étapes. Si l’une d’entre elles manque, le gisement n’a aucune chance de se former. Ce processus, qui s’étend sur des dizaines de millions d’années (Ma), débute par le piégeage et la maturation de la matière organique, surtout planctonique et algaire (c’est-à-dire roches sources ou roches mères), se poursuit par l’expulsion des hydrocarbures vers des roches poreuses et perméables (= roches réservoirs) situées à proximité ou à des centaines de kilomètres. L’étanchéité du réservoir est assurée par le dépôt de couches imperméables (argiles, sels… = roches couvertures). Le processus qui expulse et permet la migration des hydrocarbures est lié, pour l’essentiel, aux structurations ou déformations tectoniques. Et si l’étanchéité n’est pas assurée, les hydrocarbures s’échappent à la surface terrestre, au fond des océans ou dans l’atmosphère (= dysmigration) (suite lien web).

Les réacteurs nucléaires existaient déjà il y a 2 milliards d’années au Gabon

par Alain Préat

Nos premiers réacteurs nucléaires datent des années 1950… et suivent de près de 2 milliards d’années les 17 « réacteurs » naturels qui ont fonctionné de manière stable pendant 100 000 à 500 000 ans sur une période d’environ un million d’années. Ils produisirent de l’énergie avec des rendements modestes (100 kilowatts en moyenne par réacteur, bien inférieurs aux réacteurs actuels produisant 1 à 1,5 gigawatt, soit au moins 1 000 fois plus). Ces réacteurs se sont formés entre 12 et 250 m de profondeur dans les couches gréseuses du Paléoprotérozoïque[1] du bassin sédimentaire de Franceville au sud du Gabon à Oklo (16 réacteurs) et à 30 km au SE d’Oklo à Bangombé (un seul réacteur) suite à une série de processus géologiques aléatoires qui ont mené à un enrichissement de l’uranium. La taille de ces réacteurs est variable, le plus grand, situé à 18 m de profondeur, formant une lentille épaisse de 20 à 50 cm sur 12 m de longueur. Leur « cœur » consistait en une couche de 5 à 20 cm d’épaisseur d’uraninite (40 à 60% d’UO2) emballée dans des argiles d’altération formées à 400° C suite à la fission nucléaire. Les produits radioactifs (plutonium, thorium, plomb…) sont pour la plupart restés à proximité des réacteurs depuis 2 milliards d’années, sans causer de dommages particuliers (l’encaissant n’a été affecté que sur quelques centimètres à quelques mètres), ce qui montrerait que le stockage géologique des déchets radioactifs est possible sur de longues périodes de temps. Les conditions de fonctionnement de ces réacteurs naturels étaient semblables aux actuels basés sur la production des neutrons rapides. Ces derniers sont ralentis par un modérateur (eau ou graphite) et un agent refroidissant (eau) permettant l’entretien de la réaction de fission de l’235U, un des trois isotopes[2] uranifères présents sur la Terre (0,720 % de l’uranium naturel) avec l’238U (99,275 %) et l’234U (0,005%). L’235U étant peu abondant par rapport à l’isotope 238U doit donc être artificiellement enrichi (3 à 4 %) afin d’être utilisé comme combustible dans les centrales nucléaires actuelles. La réaction peut être spontanément initiée par l’238U. La réaction de fission en chaîne nécessite également des absorbeurs de neutrons (cadmium, iridium, carbure de bore) sous forme de barres mises en contact avec le combustible (il s’agit de barres de contrôle permettant de museler la réaction en chaîne). Il y a 2 milliards d’années le taux d’235U présent dans l’uranium naturel avec l’238U était beaucoup plus important qu’aujourd’hui car la vitesse de désintégration de l’235U est six fois plus rapide que celle de l’238U, l’uranium naturel pouvait ainsi être à la base d’une réaction en chaîne spontanée. Finalement il faut quatre conditions pour qu’un réacteur naturel puisse exister (suite lien web).

Pourquoi donc les “marbres rouges” sont-ils rouges?

par Alain Préat


Depuis des siècles, les calcaires rouges d’Europe (traditionnellement appelés « marbres rouges ») ont fasciné les architectes et les sculpteurs qui les ont utilisés tant dans les monuments civils et religieux, que pour les œuvres d’art. Les marbres rouges sont relativement rares dans la nature et ont été recherchés et exploités depuis le Moyen Âge en Belgique, Espagne, France, Italie, Tchéquie, etc. Leurs âges sont divers, depuis le Cambrien jusqu’au Néogène [1]. Les marbres rouges dévoniens de France et de Belgique eurent une vogue extraordinaire aux XVe et XIXe siècles : plus de 400 carrières furent ouvertes de la Montagne Noire jusqu’aux bordures des Ardennes franco-belges qui produisirent différentes variétés, depuis les « Rouges Byzantins » jusqu’aux « Rouges Impériaux ». Ainsi furent édifiés le Palais de Louis XIV, le Trianon , le Château de Versailles ; on les retrouve même à l’Assemblée Nationale au Palais Bourbon à Paris.

Il semble ainsi approprié d’introduire cette discussion par une citation poétique, puisque cette teinte a inspiré tant de jolies choses [2] :

« Quand sur toi leur scie a grincé
les tailleurs de pierre ont blessé
quelque Vénus dormant encore,
et la pourpre qui te colore
te vient du sang qu’elle a versé »

Alfred de Musset, Poésies Nouvelles, 1850

(suite lien web)

Déterminer l’âge de la Terre : une bien longue quête

par Alain Préat


On pourrait croire qu’avec l’avènement de la physique nucléaire lié à la découverte de la radioactivité en 1896, l’âge absolu de la Terre aurait été facile à déterminer. Il n’en fut rien. Avant cela, le débat, voire les querelles sur l’âge de la Terre, étaient nombreuses. D’après James Ussher (1581-1656), archevêque anglican d’Armagh et primat d’Irlande, qui se basait sur la chronologie biblique, la Création aurait eu lieu dans la nuit précédant le dimanche 23 octobre 4004 avant Jésus Christ (calendrier julien). Selon lui, la Terre serait donc récente ; ces déclarations furent prises pour argent comptant pendant près de trois siècles. Avant Ussher, cet âge était encore plus énigmatique : soit la Terre avait toujours existé (Aristote), soit elle avait « simplement » été créée avec l’Univers sans date précise (religions monothéistes). L’âge biblique intrigua bien entendu de nombreux savants depuis la Renaissance (Kepler, Newton, Descartes, Kelvin, Halley …) qui utilisèrent des méthodes de calcul variées (érosion des reliefs, salinité des océans, refroidissement du Globe, distance Terre-Lune…) pour aboutir à des âges de quelques milliers d’années à quelques dizaines de millions d’années. Pour ces premiers scientifiques (ils étaient très nombreux), les temps géologiques étaient bien plus longs que les temps historiques. En 1721, Henri Gautier, inspecteur des ponts et chaussées en Languedoc, publia le chiffre de 35 000 ans à partir d’études sur l’ablation des reliefs. En réalité, ses calculs le menèrent à quelques millions d’années, mais il publia volontairement un âge faux pour éviter des problèmes avec l’Église En 1859, Charles Darwin avança le chiffre de 300 millions d’années [1] ce qui laissait suffisamment de temps aux espèces vivantes pour évoluer. Face aux critiques, il se ravisa et proposa environ 40 millions d’années (suite lien web).

L’Histoire Naturelle est chaotique, la biodiversité aussi …

par Alain Préat

S‘il l’on procédait à ‘une remise à zéro totale’ des processus ayant affecté l’évolution de notre planète, il est fort à parier qu’aujourd’hui, c’est-à-dire 4,567 milliards d’années après la formation de la Terre, la Vie serait bien différente avec une chimie (ADN ou autre combinaison chimique) et biologie (autres plans d’anatomie, autres crises, autre biodiversité) que l’on a difficile à imaginer. La Vie aurait influencé différemment la composition de notre atmosphère (c’est par exemple elle qui est à l’origine de notre oxygène) en même temps que l’atmosphère régule la Vie. Pourrait-on le prévoir?