Archives par mot-clé : Geology

The Oxygenation Catastrophe

by Ryan Casey,   February 15, 2015


Oxygen was a poisonous element to the dominant life on the planet at the time, anaerobic bacteria. In the primordial waters, oxygen molecules would normally be absorbed by decomposing organisms or would bind with iron in the water to create rust, so oxygen did not have time to accumulate.  We can see in the geological record that 2.3 billion years ago, there was a highly unusual amount of rust being deposited on the ocean floor. We know based on this evidence that there was a huge spike of oxygen in ocean at this time. It is thought that Cyanobacteria werw producing so much oxygen that it reached complete global saturation. With this, oxygen began to leave the waters and accumulate in the atmosphere, which would have profound effects on the planet.

See also : Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

Earth science: Geomagnetic reversals

David Gubbins, Nature, 2008


Earth’s magnetic field is unstable. Not only does it vary in intensity, but from time to time it flips, with the poles reversing sign. Much of this behaviour remains a mystery, but a combination of geomagnetic observations with theoretical studies has been providing enlightenment.

See also : Earth’s Magnetic Field May Be About To Reverse, devastating Humanity

Further proof El Niños are fueled by deep-sea geological heat flow

J.E. Kamis, geologist, January 27, 2017


Origine géothermique de El Nino : quelques évidences?

… Based on this information, it is most likely these eruptive El Niño heat pulses are the result of flow from the various individual components of a giant Solomon Island Area seafloor circulating system. Individual geological components include fractured rock layers, hydrothermal vents, seafloor volcanoes, and open faults. The circulating system is activated by upward movement of deep magma chambers located beneath the Solomon Island area. This movement triggers a high-magnitude earthquake swarm, which in turn activates the seafloor circulating system….

Combien de supercontinents de type ‘pangées’ depuis la formation de la Terre ?

 

par Alain Préat


C'est à partir de 1963 (Vine et Matthews[1]), principalement grâce au paléomagnétisme que l'on comprît le mécanisme à l'origine de la tectonique des plaques pressenti un demi-siècle plus tôt en 1912 par Alfred Wegener à partir de la distribution des paléoflores et des paléofaunes et de la répartition des lithologies sur les différents continents actuels. Wegener en conclut que les continents actuels étaient pour la plupart rassemblés ou emboîtés et formaient à la fin du Permien[2] une seule terre ou un supercontinent qu'il appela la Pangée. Faute de mécanisme convaincant pour expliquer cette situation, peu de géologues adoptèrent la théorie de Wegener et les géologues restèrent fixistes (les continents n'ont jamais bougé) dans leur grande majorité. Il est à noter que la correspondance des formes de côtes entre l'Afrique et l'Amérique du Sud avait déjà été constatée par Francis Bacon en 1620 sans qu'il ne formulât d'hypothèse quant à cette observation [3].

Il fallut encore plus de temps aux géologues et géophysiciens pour s'apercevoir que ce supercontinent, la Pangée, n'était pas une exception dans l'histoire de la Terre, et que plusieurs pangées se sont succédées depuis un peu plus de 2,5 milliards d'années (Ga) suivant un cycle d'environ 300 à 500 millions d'années (Ma). Ce cycle nommé cycle de Wilson[4], ou encore cycle des supercontinents, est le plus long cycle à l'échelle géologique qui fédère un nombre impressionnant de processus opérant à différentes échelles spatio-temporelles : ouverture des rides médio-océaniques, localisation des bassins sédimentaires y compris ceux contenant du pétrole, distribution des minéralisations, variation du niveau marin, évolution des compositions isotopiques du strontium, du soufre…, répartition et diversification des organismes (trilobites, dinosaures, algues…) suivant que leurs populations seront isolées ou au contraire mélangées …

Voir également : La Tectonique des Plaques : une révolution dans les sciences de la Terre

Les deux plus grandes révolutions des espèces au cours des temps géologiques

Robert Paris, 2016


Dans l’histoire des espèces vivantes, il y a eu des périodes d’explosion de la biodiversité (comme Burgess et Ediacara). Ainsi l’explosion de biodiversité, dite de Burgess, qui a produit tous les embranchements du vivant, qui s’est déroulée à l’époque appelée le Cambrien (entre 542 et 530 Millions d’années), a suivi la disparition des animaux de l’époque appelée Ediacara (entre 635 et 541 Millions d’années).

La vie a connu de grands sauts historiques comme le passage de la vie sans oxygène à la vie fondée sur l’oxygène, de la vie unicellulaire à la vie pluricellulaire, et les grandes explosions de diversité comme celles d’Ediacara et Burgess.

Egalement : De Burgess à Franceville (Gabon) , les plus anciennes traces de pluricellulaires

Egalement : le Gabon à aube de la Vie

 

International Commission on Stratigraphy

The International Commission on Stratigraphy is the largest and oldest constituent scientific body in the International Union of Geological Sciences (IUGS). Its primary objective is to precisely define global units (systems, series, and stages) of the International Chronostratigraphic Chart that, in turn, are the basis for the units (periods, epochs, and age) of the International Geologic Time Scale; thus setting global standards for the fundamental scale for expressing the history of the Earth.

See also  Episode : Journal of International Geoscience

 

La Tectonique des Plaques : Une Révolution dans les Sciences de la Terre

Prof. (émer.) Daniel Demaiffe, Université Libre de Bruxelles, 2011


Remarquable synthèse de la tectonique des plaques

La tectonique des plaques telle que nous la comprenons actuellement rend compte de l’histoire de la Terre, aussi bien celle des océans que celle des continents, au cours des derniers 200 Ma. Cette théorie de la mobilité des masses continentales et de l’expansion des fonds océaniques permet d’expliquer l’évolution des plaques lithosphériques sur le long terme. Tuzo Wilson est le premier à avoir formalisé cette évolution (1966) en introduisant le concept de cycle, connu désormais dans la littérature sous l’appellation de cycle de Wilson. Ce cycle résume l’histoire d’un domaine océanique en une série de stades successifs: stade embryonnaire (Mer rouge), stade d’océan jeune (golfe de Basse-Californie), stade de maturité (océan Atlantique), stade de déclin (début des subductions : bassins marginaux du Pacifique), stade terminal de quasi fermeture (la Méditerranée depuis 30 Ma) et stade collisionnel (plateau du Tibet et Himalaya) aboutissant à l’amalgamation de différents blocs continentaux, à la surrection de vastes chaînes de montagnes et à la formation éventuelle de suture ophiolitique.

Des versions animées du déplacement des continents à travers les temps géologiques sont disponibles sur le web (Université de Berkeley), cf premier lien ci-dessous.
Geology : Plate Tectonics

A history of supercontinents on planet Earth

Combien de supercontinents depuis la formation de la Terre?

 

Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous

J.  Brugger, G. Feulner S. Petri  (13 January  2017)


Sixty-six million years ago, the end-Cretaceous mass extinction ended the reign of the dinosaurs. Flood basalt eruptions and an asteroid impact are widely discussed causes, yet their contributions remain debated. Modeling the environmental changes after the Chicxulub impact can shed light on this question. Existing studies, however, focused on the effect of dust or used one-dimensional, noncoupled atmosphere models. Here we explore the longer-lasting cooling due to sulfate aerosols using a coupled climate model. Depending on aerosol stratospheric residence time, global annual mean surface air temperature decreased by at least 26°C, with 3 to 16 years subfreezing temperatures and a recovery time larger than 30 years. The surface cooling triggered vigorous ocean mixing which could have resulted in a plankton bloom due to upwelling of nutrients. These dramatic environmental changes suggest a pivotal role of the impact in the end-Cretaceous extinction.


Also : How the darkness and the cold killed the dinosaurs

Paleontologists classify mysterious ancient cone-shaped sea creatures

One branch on the tree of life is heavier as a team of scientists has determined what a bizarre group of extinct cone-shaped animals actually are. Known as hyoliths, these marine creatures evolved over 530 million years ago and are among the first known to have external skeletons. Long believed to be molluscs, a new study shows a stronger relationship to brachiopods — a group with a rich fossil record though few species living today.

Source : Paleontologists classify mysterious ancient cone-shaped sea creatures

Le changement climatique : la règle en géologie … Le taux de CO2 atmosphérique n’a jamais été aussi faible qu’aujourd’hui et la relation température/teneur en CO2 reste encore mal comprise

par Alain Préat

Article publié ( 27 décembre 2016) sur http://revue-arguments.com

Egalement pour les commentaires, sur le site notre-planete.info


Un écheveau d’une incroyable complexité

Depuis que la Terre existe, c’est-à-dire depuis 4,567 milliards d’années [1], s’il est bien une constante c’est qu’elle n’est jamais restée figée telle quelle, et qu’elle fut sans cesse profondément modifiée de façon plutôt aléatoire. Cela concerne autant les processus internes (notamment la composition de la lithosphère et les variations des mécanismes affectant la dérive des continents) que les processus externes. Parmi ces derniers l’atmosphère n’a cessé de varier du tout au tout notamment en ce qui concerne sa composition gazeuse. L’ensemble de ces processus internes et externes se sont sans cesse ‘télescopés’ et ont entraîné des rétroactions complexes à l’origine des nombreux changements climatiques observés dans les archives géologiques. A ces paramètres s’ajoutent également ceux pilotés à l’échelle extraterrestre, parmi les plus importants citons l’activité du Soleil ou les variations des paramètres orbitaux de notre Planète (précession, obliquité, écliptique). Le résultat est une combinaison extrêmement complexe de processus cumulatifs réguliers, irréguliers, linéaires ou non, chaotiques souvent, jouant à toutes les échelles temporelles et affectant à tout moment le climat qui en constitue une réponse. Physiciens, chimistes, biologistes, géographes… géologues tentent chacun à partir de son pré-carré de démêler cet écheveau particulièrement difficile à comprendre. Les synergies entre les disciplines sont heureusement nombreuses et le système climatique est peu à peu mis à nu à travers les temps géologiques (voir figure ci-dessous pour la succession des âges géologiques).

Echelle des temps géologiques:

ChronostratChart2016-04

L’enregistrement du temps en géologie : l’intuition prise en défaut (conférence)

par Alain Préat


Contrairement à l’intuition, les séries sédimentaires n’ont enregistré que très peu de temps (quelques pourcents seulement) et sont avant tout lacunaires.  Le temps non enregistré est ‘matérialisé’ par des joints ‘secs’  (= arrêts de sédimentation séparant les couches géologiques), des joints d’épaisseur (pluri)millimétrique ou des lacunes d’érosion. Il a fallu près de deux siècles pour s’en rendre compte et l’échelle des temps géologiques s’est construite sur cette erreur de bonne foi. Depuis le milieu du 20ème siècle des commissions d’abord nationales, puis internationales ont été mises

sur pied et tentent de corriger les nombreuses incohérences en proposant de nouvelles coupes géologiques de référence, connues en tant que stratotypes ou limitotypes. L ‘échelle est actualisée tous les quatre ans  et publiée dans le site international de stratigraphy.org.

La conférence présentée  (dans diverses institutions universitaires et à l’Académie royale de Belgique) se veut un historique du problème et intègre les travaux les plus récents en ce domaine. Comme dans beaucoup d’autres disciplines (physique avec’ l’éther’, biologie avec ‘la génération spontanée’, chimie avec ‘le phlogistique’ …), la géologie s’est établie à partir de biais (‘les séries ont enregistré 100% du temps géologique’ )… qui mettent du temps pour être d’abord compris, puis résolus. Travail jamais fini…

En conclusion, vu l’absence d’enregistrement significatif du temps dans les séries géologiques, on peut considérer celles-ci comme des ‘gruyères temporels’ et la plupart du temps il ne se passe donc rien!

Egalement se reporter aux difficultés rencontrées pour déterminer l’âge de la Terre.

 

Climate Change : the Rule in the Geological Record (Conference)

par Alain Préat


 The first aim of paleoclimate science is to identify from observations of the geological record, the  nature of past climate changes. Paleoclimate is probably the oldest discipline in Earth science, it began in the 19th-century, and earlier with the discovery of elephant-like beast in the superficial deposits of Europe and Siberia debate about the intepretation in the 18th-century. The debate was about these surface enviroments of temperate areas shaped by the biblic flood or by glaciers [Préat, 2015 http://www.notre-planete.info/actualites/actu_4356.php]. By the middle of the 20th-century, many climate features associated with the recent ice ages have been identified. Geological processes are critical to the evolution of the climate. The most important issue pertaining the earliest evolution of the Earth’s climate is that energy emitted by the sun has progressively increased over 4.6Ga.  Recontructing climate history from the inherently incomplete geological record requires integrated analyses including geochronology, paleomagnetostratigraphy, paleobiology, paleotectonics etc.  Climate change in the geological past is the rule, it has been reconstructed using a number of key archives (including sedimentary, geochemical proxies) since billion of years. These records reveal that since its birth the Earth’s climate as a rule has been warming up or cooling down with periods of (super)greenhouse and (super)icehouse modes, on scales of thousands to hundreds of million of years. The controlling factors are both cyclic (external or astronomical) and secular (internal to the Earth) and related to plate tectonics. For more than 90 percent of its 4.6 billion-year history, Earth has been too  warm, even at the poles, for ice sheets to form. We live  in unusual times at least from the cooling at the Eocene-Oligocene boundary (± 34 Ma)  with the glaciating Antarctica. The Earth was also severely glaciated several times in its history (e.g. about 750 and 535 Ma).  As an example of the conditions prevailing in the very warm times, oxygen isotopes suggest that the Archean seawater (4.0-2.5 Ga) coud have experimented hyperthermal environments, with temperatures as high as 55-85°C [Knauth, 2005 Palaeogeography, Palaeoclimatology,  Palaeoecology, 219 : 53-69]. Considering the Precambrian as a whole (4.6-0.541 Ga), prior to about 2.2 billion years ago, the amount of oxygen in the atmosphere and surface ocean was small, concentrations of CO2 were as high as 100-1000 times modern levels, as those of CH4 which were more higher. Complex microbial eocosystems developed during this period (sulfate-reducing bacteria, autotrophic methanogens, fermenting bacteria, anoxygenic phototrophic bacteria) and could have been important contributors to the biological productivity of early Earth. Past about 2.2 Ga the productivity began to be driven by oxygen-producing (micro)organisms.

 

Les prophéties hallucinatoires de la Pythie de Delphes expliquées par la géologie

par Alain Préat

La Pythie de Delphes, une prêtresse de l’Antiquité grecque, a fortement marqué les esprits des pèlerins des VIIème et VIème siècles avant Jésus Christ par ses prophéties hallucinatoires. L’oracle, qui portait tantôt sur des faits de guerre, tantôt sur des questions plus personnelles ne faisait pas toujours l’unanimité, mais là n’est pas le plus important… Ce qui constituait une ‘énigme’ en ces temps reculés et jusqu’il y a peu, était le fait que la ou les Pythies entraient en transe dans la grotte, année après année, avec une régularité de métronome. Comment cela était-il possible, y avait-il supercherie, manipulation ? La prêtresse jouait-elle un rôle en accord avec les prêtres… ? Ces questions légitimes furent régulièrement posées tout au long de l’Histoire et finalement, il y a près d’une vingtaine d’années, c’est la géologie qui apporta une solution à cette intrigue. 

Les biominéraux microbiens : des gisements terrestres à l’exobiologie

D. Gillan (U. Mons) et A. Préat (ULB)

En raison de la toxicité des métaux lorsque ceux-ci sont en trop grande concentration dans l’environnement, le monde cellulaire a développé toute une série de mécanismes de résistance qui commencent à être bien connus chez les bactéries. Certains de ces mécanismes produisent des minéraux pouvant alors être qualifiés de biominéraux. De nombreux biominéraux ont ainsi été identifiés dans le monde bactérien. Cela va de la calcite aux oxydes de fer et de manganèse en passant par le phosphate de plomb et d’uranium. L’intérêt de bien connaître les processus de biominéralisation microbienne réside dans le fait qu’ils peuvent servir de biosignature. En effet, lesbiominéraux peuvent être préservés au cours des temps géologiques alors que les cellules à basede carbone se décomposent beaucoup plus rapidement.

La bonne connaissance de la structure de ces biominéraux nous offre un outil précieux qui pourrait être utilisé dans le cadre de la recherche de la vie sur d’autres planètes. Sur terre, l’activité des microorganismes a conduit depuis 3,7 milliards d’années à la formation de gisements minéraux encore exploités. De nombreux exemples sont connus comme les fameux dépôts rubanés de fer (« BIF ») précambriens, les stromatolithes précambriens exploités par les cimentiers en Afrique, les « marbres rouges » mésozoïques européens dont la teinte liée à des ferro-bactéries sont utilisés depuis des siècles par les architectes, les gisements d’or d’Afrique du Sud plus riches grâce à la médiation bactérienne, certains gisements de plomb, de zinc, de nickel, etc. Tous les indices biologiques laissés dans ces bio-gisements suite aux interactions de microbes et minéraux seront parmi les premiers qui nous révèleront des traces de vie sur d’autres planètes.