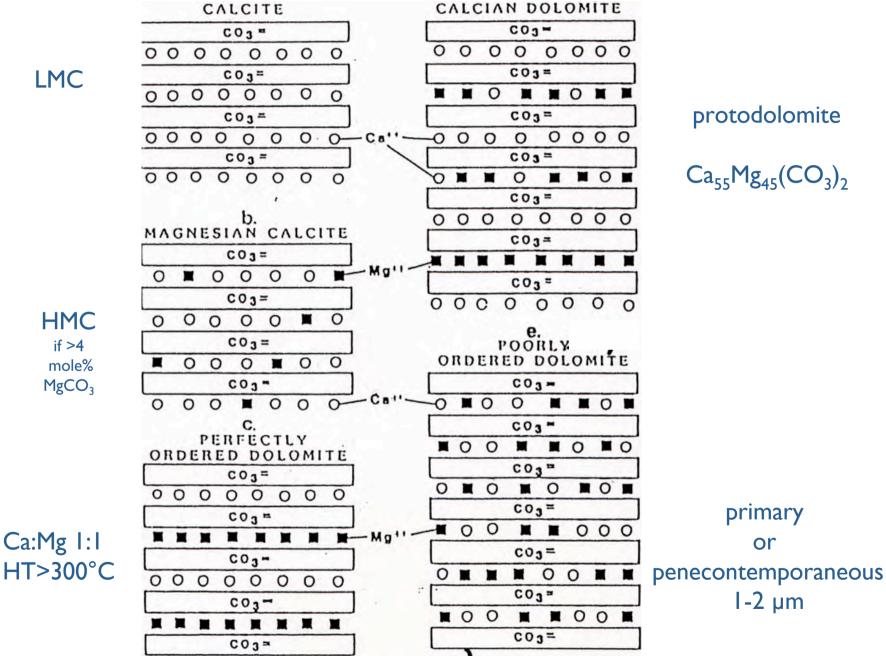

MICROFACIES OF CARBONATE ROCKS AND DEPOSITIONAL ENVIRONMENTS

0


Prof. Alain Préat Free University of Brussels

WHAT IS A 'NORMAL' LIMESTONE?

COMMON CARBONATE MINERALS

LMC

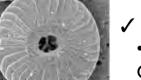
DIAGENESIS (...)

ARAGONITE + HMC \rightarrow LMC +(DOLOMITE)

dissolution, neomorphism, cementation (...)

COMMON CARBONATE MINERALS

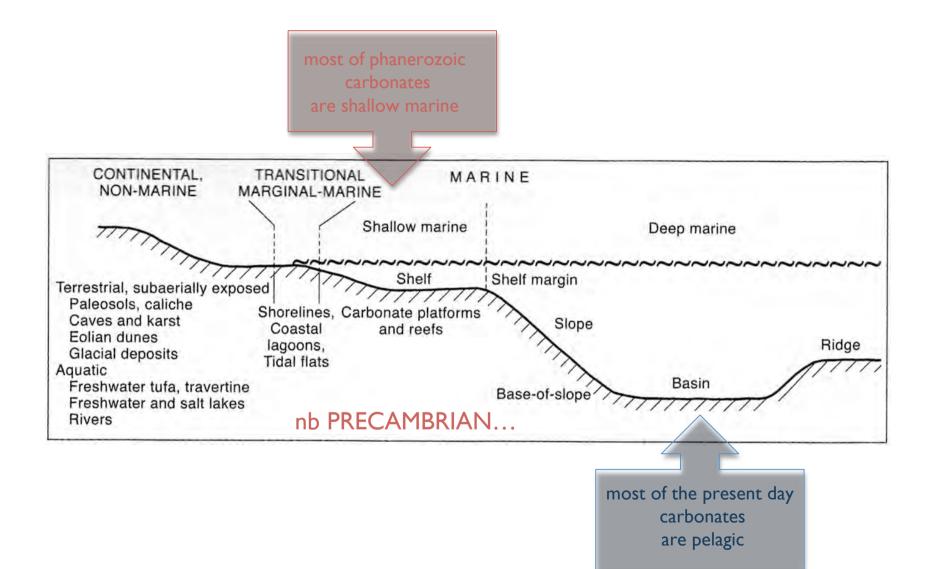
	System	Mol % MgCO ₃	Stability
Calcite CaCO ₃ Low-Mg calcite (LMC)	trigonal	<4	stable
Mg-calcite CaCO ₃ High-Mg calcite (HMC)	trigonal	>4 to ~30 Mg content correlated with water temperature	metastable
Aragonite CaCO ₃	orthorhombic	very low	metastable, alters readily in calcite under aqueous conditions
Dolomite	trigonal CaMg(CO ₃) ₂	40 - 50	stable


Isotope signal Preservation potential	Mineralogy of components	Compor Skeletal	nents Non-skeletal	Bulk sediments
HIGH	Pristine aragonite	Mollusks	Marine cements	
Good chance of preservation of carbon and oxygen isotope signals	Pristine Low-Mg calcite fossils, grains or cements	Brachiopods, belemnites, foraminifera, bivalves	Marine cements, Low-Mg calcite ooids	Pelagic sediments particularly coccolith oozes
Phosphatic fossils	Conodonts, fish teeth			
MODERATE Carbon isotope signals may be preserved, oxygen isotope signals are commonly altered	Secondary calcites (stabilized in relatively closed systems with low water/rock ratio)	Molluscs, foraminifera, corals, echinoderms, calcareous algae	Marine cements, ooids, peloids, intraclasts	Some micrites, some shallow- water carbonates, some dolomites
LOW Carbon and oxygen isotope signals very likely to have been altered	Secondary calcites (stabilized or cemented in relatively open systems with high water/rock ratio)		altered by near surface ve cementation or recrys burial; many dolomites	

Preservation potential of C and O isotopes in ancient carbonates (Marshall 1992 in Flügel 2004)

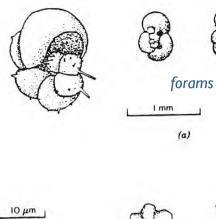
CARBONATES : BORN IN THE SEA

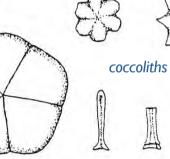
- ✓ Well over 90% or more of the carbonates in MODERN marine environments are BIOLOGICAL in origin, i.e. the sediments are biotically induced or controlled,
- Carbonate sediments originate on land and in the sea. <u>TODAY</u> only around 10% of marine carbonate production takes place in SHALLOW SEAS. 90% is related to the deposition of calcitic plankton in the DEEP SEAS. These proportions were very different during most parts of the PHANEROZOIC => about 70% of microfacies studies concern shallow-marine carbonates formed on the shelf and near the shelf break

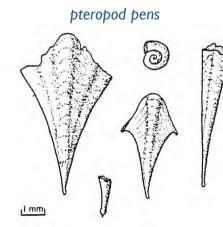


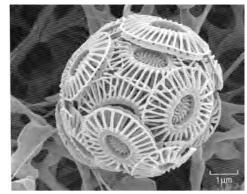
SEAWATER

- contains 95 chemical elements, (very) far from the saturation state
- Ca => carbonates, sometimes phosphates
- Ba => sulfates
- Fe and Mn => (hydr)-oxydes
- Si (extracted by organisms despite undersaturation) => silica
- nb: Major constituents of SW: if > 1 ppm by weight => they account for over 99% of the **salinity** (=35‰) by weight throughout most of the oceans (Cl⁻, Na⁺, Mg²⁺, SO₄²⁻, K⁺ = 99.8% of the mass of the solutes in SW (Na and Cl = 86%).

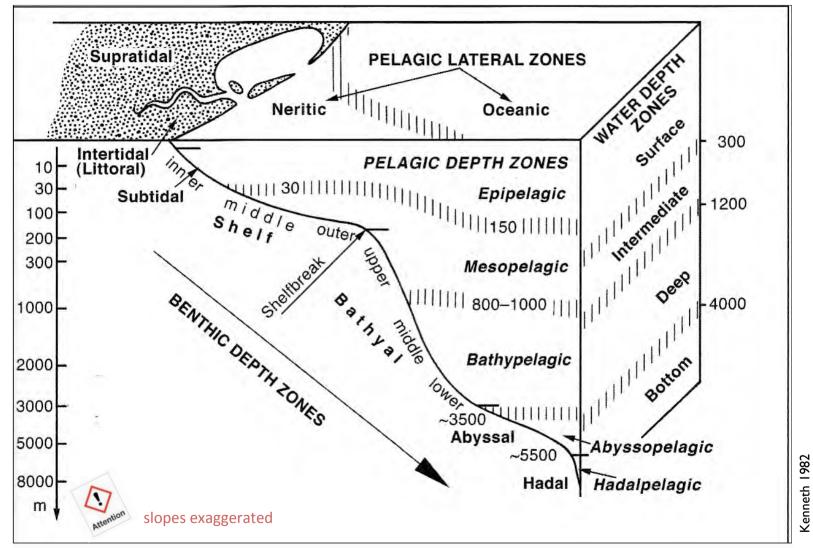

CARBONATES : BORN IN THE SEA



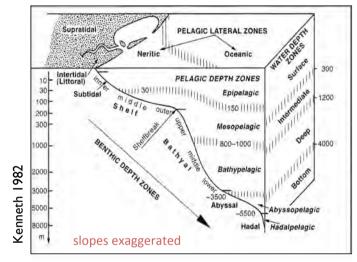




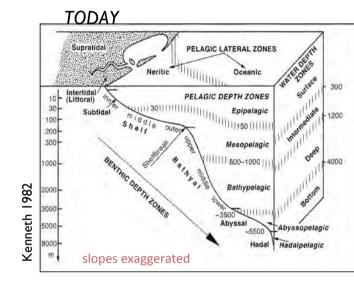
(F)



Coccosphere of the coccolithophore Emiliana huxleyi (R James, Open U., 2005)


Calcareous remains found in the deep-sea sediments (today), Reidel 1963

There is no universally accepted scheme of subdivision of marine environments among biologists, oceanographers and geologists.


Essential critical INTERFACES that control sedimentary patterns and the distribution of the organisms are

- I lower & upper boundaries of the TIDES (control distribution of organisms); 2 base of the photic zone (control light-depend phototrophic organisms);
- 3 base of the zone of wave abrasion (above which bottom currents and wave action lead to erosion and cementation);
- 4 base of the action of storms on the sea bottom;
- 5 O_2 minimum zone (strongly limiting life on the sea bottom);
- 6 thermocline (the layer of water that is too cold for most carbonateproducing organisms);
- 7 pycnocline (the layer of water where salinity is too high for most of organisms.

HIGH & LOW TIDES, WAVE BASE (FWWB) & STORM WAVE BASE (SWB) ARE USED AS BASIC BOUNDARIES IN THE CLASSIFICATION OF THE MAJOR SHALLOW-MARINE ENVIRONMENTS.

There is no universally accepted scheme of subdivision of marine environments among biologists, oceanographers and geologists.

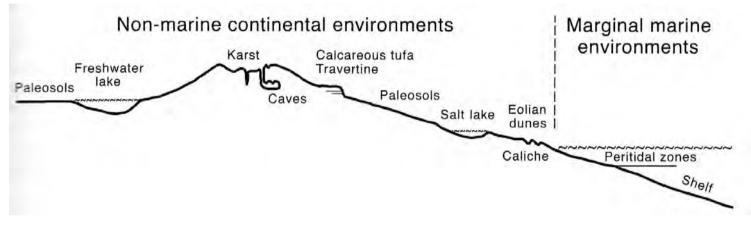
BENTHIC (ecological) DEPTH ZONES : SIX ZONES I coastal sublittoral : above high tide = 'SUPRATIDAL' 2 littoral : between high & low tides = 'INTERTIDAL' 3 sublittoral : below low tide = MAJOR PART OF THE CONTINENTAL SHELF 4 bathyal= ± CONTINENTAL SLOPE 5 abyssal = ABYSSAL PLAINS 6 hadal = DEEP-SEA TRENCHES

GEOLOGISTS = SUPRATIDAL-INTERTIDAL-SUBTIDAL

PELAGIC (ecological) DEPTH ZONES : FIVE ZONES defined by the vertical distribution of floating and swimming life.

- I epipelagic: upper region of ocean to a depth of about 200m
- 2 mesopelagic
- 3 bathypelagic
- 4 abyssopelagic
- 5 hadopelagic

There is no universally accepted scheme of subdivision of marine environments among biologists, oceanographers and geologists.


GEOLOGISTS = SUPRATIDAL-INTERTIDAL-SUBTIDAL

NERITIC ZONE : is the water that overlies the continental shelf \Rightarrow today generally with water depth < 200 m and covering ± 8% of the ocean floor

'OCEANIC' ZONE : refers to the water column beyond the SHELF BREAK, overlying the slope and the deep-sea bottoms, generally with water depths > 200 m and down to more than 10 000 m.

these water depths are not compatible with the situation in many ancient oceans => the term 'neritic' is often used to describe sea bottom environments below the neritic water column, or shallow-marine environments characterized by significant terrigenous influx

Non-marine carbonates originate in TERRESTRIAL and AQUATIC environments without marine influence => formed by ABIOTIC and/or BIOTIC processes = **subaerial exposed** settings and **in submerged aquatic** settings

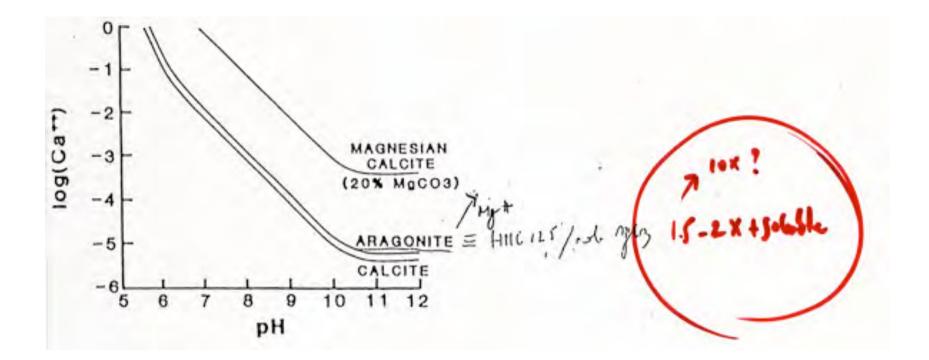
I. Terrestrial subaerial exposed settings

- pedogenic carbonates, paleosols, caliche/calcretes
- palustrine carbonates
- cave carbonates, karsts (speleothems....)
- eolian carbonates => eolianites
- glacial carbonates

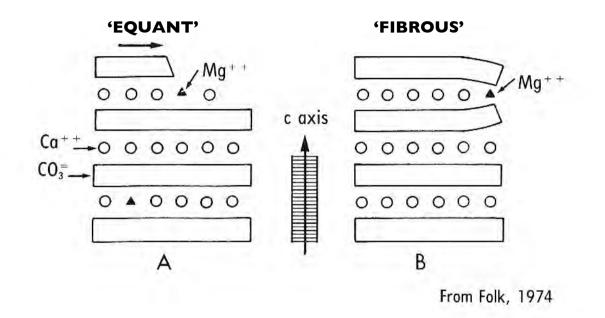
2. Terrestrial aquatic settings

- freshwater carbonates (travertine, calcareous tufa ...)
- lacustrine carbonates
- fluvial carbonates

CARBONATES : BORN IN THE SEA MINERALOGY

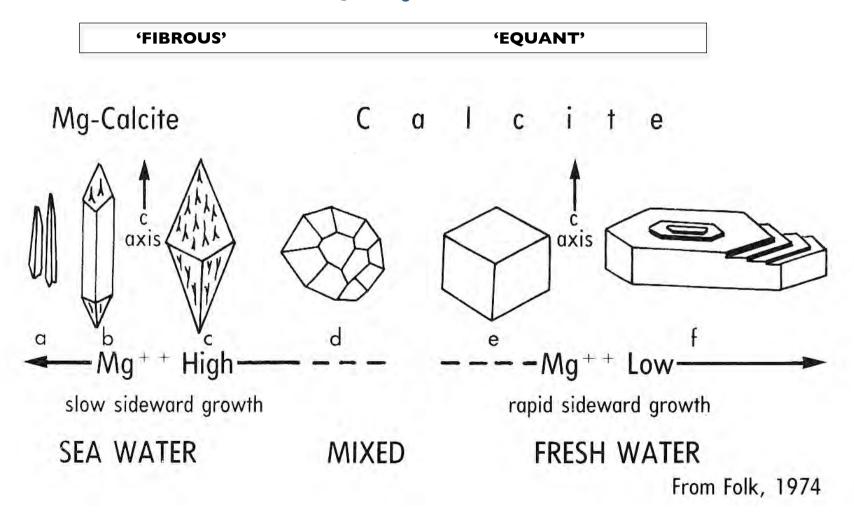

- SEAWATER : Mg/Ca = 5.2
 => numerous phases coexist : ARAG, LMC, HMC, DOL
- ✓ SUBSURFACE/METEORIC WATER : Mg/Ca = I only LMC
- ✓ MODERN/RECENT SEDIMENTS : ARAG, LMC, HMC
- Theory/Thermodynamics : DOL first Kinetic : ARAG and HMC due to inhibitor action of Mg and lack of CO_3 availability (cf. crystallography) in order to form DOL

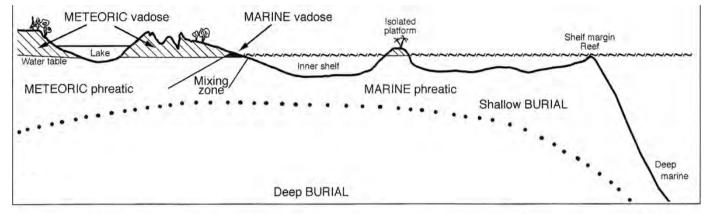
✓ if Mg/Ca > 7 or = 1 => DOL [EVAPORITIC or SCHIZOHALINE]


CONCLUSION: CARBONATE = KINETIC 'PROBLEM'

HT = STOECHIOMETRIC DOL Ca:Mg = I/I (> 300°C) LT = 'Ca-DOL : Ca₅₅Mg₄₅(CO₃)₂ => XRD [=PROTODOLOMITE, tiny crystals I-2µm] + BACTERIAL-FUNGAL-induced DOL

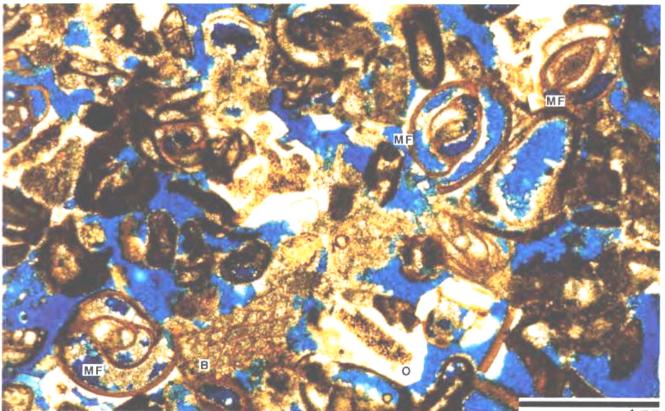
CARBONATES : BORN IN THE SEA MINERALOGY-DIAGENESIS


CARBONATE CRYSTALLOCHEMISTRY


Morphology of calcite crystals as controlled by selective 'Mg-poisoining'. **A** If a Mg ion is added to the end of growing crsytal it can be easily overstepped by the next succeeding CO_3 layer without harm to the crystal growth. **B** If the small Mg ion is added to the side of the crsytal, the adjacent CO_3 sheets are distorted to ccomodte it in the lattice, hampering further sideward growth => growth of small, fibrous crystals.

CARBONATE CRYSTALLOCHEMISTRY

1960' Calcite crystal growth habit as a function of Mg/Ca ratio **nb : 1990' availability CO**₃²⁻


CARBONATES : BORN IN THE SEA MINERALOGY-DIAGENESIS

Diagenetic environment	Location	Pore Filling	Processes	~ Time needed
Meteoric vadose environment	Above water table, between land surface and meteoric phreatic zone	Pores filled with freshwater and/ or air	<i>Solution zone</i> (soil): Extensive solution; removal of aragonite; formation of vugs. <i>Precipitation zone</i> (near surface): Minor cementation	10 ³ - 10 ⁵ years
Meteoric phreatic environment	Below water table, may tend downwards 100s of meters	Pores filled with freshwater	Solution zone (e.g. sinkholes, caves): Solution; formation of molds and/or vugs. Active zone (upper part of meteoric phreatic environment): Dissolution of aragonite and Mg-calcite; rapid and diverse cementation; precipitation of calcite; creation of molds and vugs. Stagnant zone (deeper part and in arid climates): Little cementation; stabilization of aragonite and Mg-calcite	10 ³ -10 ⁵ up to 10 ⁶ - 10 ⁷ years
Marine phreatic environment	On the shallow or deep sea floor or just below	Pores filled with marine water	Shallow-marine environment: Waters oversaturated with respect to CaCO ₃ ; rapid cementation by aragonite and Mg-calcite; diverse cement types. <i>Deep-marine and cold-water environments:</i> Waters undersaturated with respect to CaCO ₃ ; strong dissolution of aragonite and calcite at two dissolution levels	10 ¹ - 10 ⁴ years
Burial environment usşels/U. Soran	Subsurface beneath reach of surface- related processes, down to realm of low- grade metamorphism. May tend downwards 1000s of meters	Pores filled with brines of varying salinity, from brackish to highly saline	Shallow burial (first few meters fo tens of meters) and deeper burial (sediment overburden of hundreds to thousands of meters): Physical compaction; chemical compaction (pressure solution); cementation; porosity reduction	10 ⁶ -10 ⁸ years

18

CARBONATES : BORN IN THE SEA MINERALOGY-DIAGENESIS

MF miliolid foram, B bryozoans, O syntaxial overgrowth. PRIMARY INTER-INTRA POROSITY partly reduced (dogtooth and granular cements within forams and echinoderm overgrowths)

'DISSOLUTION SEQUENCE' HMC => LMC (Mg↓) or DOL (Mg↑) then ARAG => MOLDS or LMC, finally 'LMC'

Flügel 2004

.⊆

Memoir 1

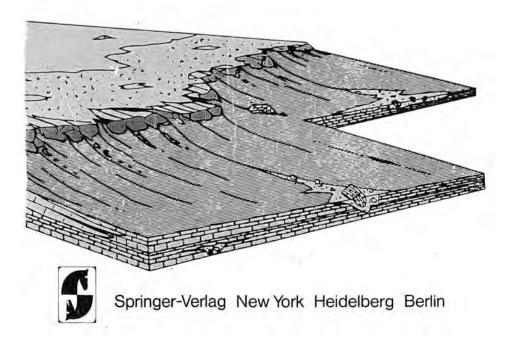
1962

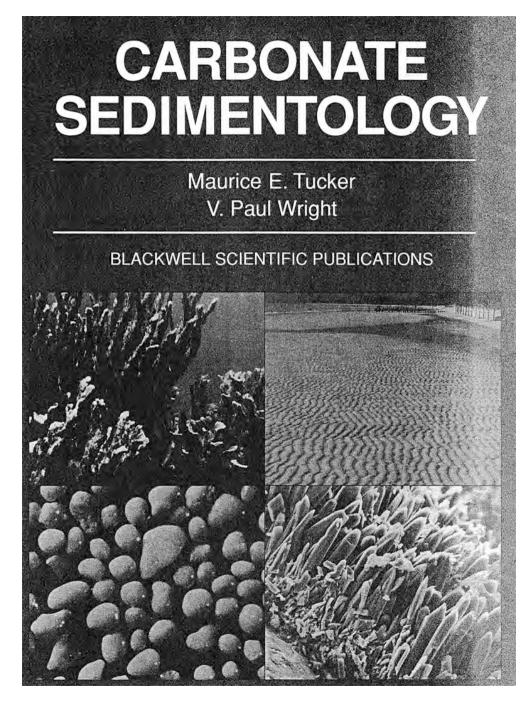
CLASSIFICATION

OF	3	a symposium
CARBONA	ГE	ROCKS

A Symposium arranged by the Research Committee of The American Association of Petroleum Geologists

Including papers presented orally under joint auspices of the Association and the Society of Economic Paleontologists and Mineralogists, at Denver, Colorado, April 27, 1961.


Edited by WILLIAM E. HAM


CONTENTS

FOREWORD. By William E. Ham	1
MODERN CONCEPTS AND CLASSIFICATIONS OF CARBONATE ROCKS. By William E. Ham and Lloyd C. Pray	2
BIOLOGICAL, GENETIC, AND UTILITARIAN ASPECTS OF LIMESTONE CLASSIFICATION. By Dan E. Feray, Edward Heuer, and Willis G. Hewatt	20
CARBONATE ROCK TYPES. By M. W. Leighton and C. Pendexter	33
SPECTRAL SUBDIVISION OF LIMESTONE TYPES. By Robert L. Folk.	62
ENERGY INDEX FOR LIMESTONE INTERPRETATION AND CLASSIFICATION. By W. J. Plumley, G. A. Risley, R. W. Graves, Jr., and M. E. Kaley.	85
CLASSIFICATION OF CARBONATE ROCKS ACCORDING TO DEPOSITIONAL TEXTURE. By Robert J. Dunham	108
ARABIAN UPPER JURASSIC CARBONATE RESERVOIR ROCKS. By R. W. Powers	122
GROUPING OF CARBONATE ROCKS INTO TEXTURAL AND POROSITY UNITS FOR MAPPING PURPOSES. By G. E. Thomas	193
Skeletal Linestone Classification. By Henry F. Nelson, Charles Wm. Brown, and John H. Brineman	224
CLASSIFICATION OF MODERN BAHAMIAN CARBONATE SEDIMENTS. By John Imbrie and Edward G. Purdy	253
INDEX	273

Published by The American Association of Petroleum Geologists, Tulsa, Oklahoma, U.S.A. 1962

James Lee Wilson [975 Carbonate Facies First synthesis in Geologic History

1990 with SEM Geochemistry Recent studies

= > abundant textbooks....

≈ 1900 GRABAU : 'calcirudite', 'calcarenite', 'calcilutite'
 1949 PETITJOHN : limestones = allochthonous, autochthonous, bioherms, biostromes

1959-1962 FOLK first (practical) petrographic classification

based on 'textural maturity' deriving from previous studies in the siliclastics!

- => allochems (= allochthonous carbonate grains) = depositional energy
- => spar
- => micrite

1962 ... AA**P**G Memoir#1

=> DUNHAM : nature of grain support

=> PLUMLEY et al. : energy index $I_{1,2,3} \dots V_{1,2,3}$

1971 EMBRY & KLOVAN BCPG Memoir#19 'coarse-grained 'reefal' rocks

CLASSIFICATION OF POROSITIES (CARBONATES)

1970 CHOQUETTE & PRAY AA<u>P</u>G 54, 207-250 **1995 LUCIA** AA<u>P</u>G 63, 279-300

TODAY

GLOBAL APPROACHES

• Academic

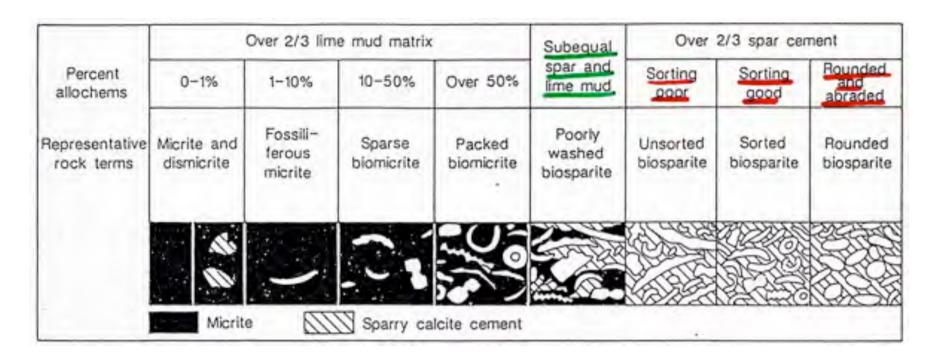
• Environmental

APPLIED APPROACHES

- Source rocks
- Reservoir rocks

• Seal rocks

. . . .

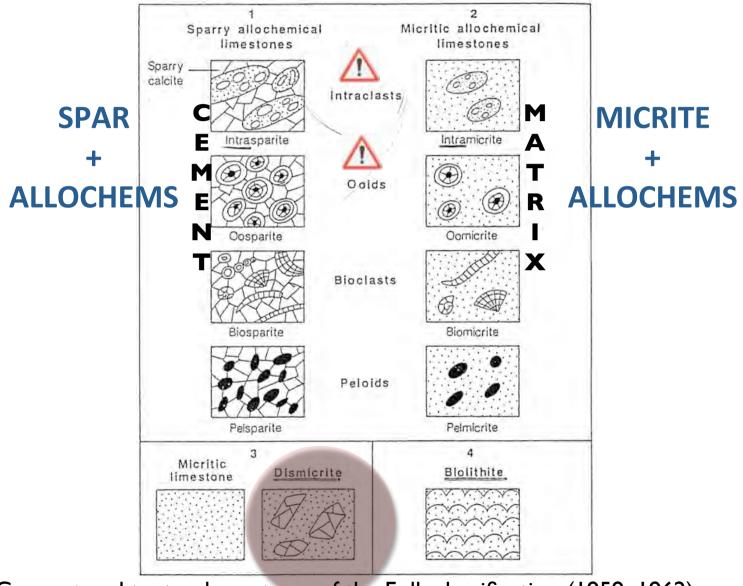

C	one	e of th	ie		Allochems ROCKS (I AND II)		<10% Allocher MICROCRYSTALLINE (III)		IRBED							
	most		most popular			Sparry calcite cement > Microcrystalline aaze Walrix	Microcrystalline Ooze Matrix > Sparry Cal- cite Cement		1-10% Allochems	<1% Allo-	UNDISTURBED					
	pop				SPARRY ALLOCHEMICAL ROCKS (I)	MICROCRYSTALLINE ALLOCHEMICAL ROCKS (II)			chems	(IV)						
z		> 25% Intra-	clasts (i)	Introsparrudite (li:Lr) Introsparite (li:La)	Intramicrudite (IIi:Lr) Intramicrite (IIi:La)		Intraclasts: Intraclast- bearing Micrite (Illi:Lr or La)	ImX:L); 1:D)								
A COMPOSITION		>25%	Oolites (0)	Oosparrudite (lo:Lr) Oosparite (lo:La)	Oomicrudite (Ilo:Lr) Oomicrite (Ilo:La)	nt Allochem	Oolites: oolite-bearing Micrite (Illo:Lr or La)	d. Dismicrite (IIImX:L); Dolomicrite (IIIm:D)	(TFA)							
RIC ALLOCHEM				VOLUMETRIC ALLOCHE <25% Introclasts			6 Introclasts	6 Introclasts	lites io of ellets	>3:1 (b)	Biosparrudite (Ib:Lr) Biosparite (Ib:La)	Biomicrudite (IIb:Lr) Biomicrite (IIb:Lo)	Most Abundant	Fossils: Fossiliferous Micrite (IIIb: Lr, La, or L1)	if disturbe dolomite,	Biolithite (IV:L)
VOLUMET					<25% Oolites Volume Ratio of Fossits to Pellets	3:1-1:3 (bp)	Biopelsparite (Ilbp:La)	Biopelmicrite (libp:La)		Pellets: Pelletiferous	rite (IIIm:L); if primory					
		. > 5	<1:3 (p)	Pelsparite (lp:La)	Pelmicrite (Ilp:Lo)		Micrite (IIIp:La)	Mic								

Fol (1959), as modified by Folk (1962).

This classification is compositional as well as textural (for non-reef carbonates) The basic philosophy is that carbonate rocks are similar to siliciclastic rocks in their mode of deposition, because their textures are both controlled largely by the water energy

⇒ intraclasts and oolites > < micrite 'WRONG IN MOST CASES.....'

2ª

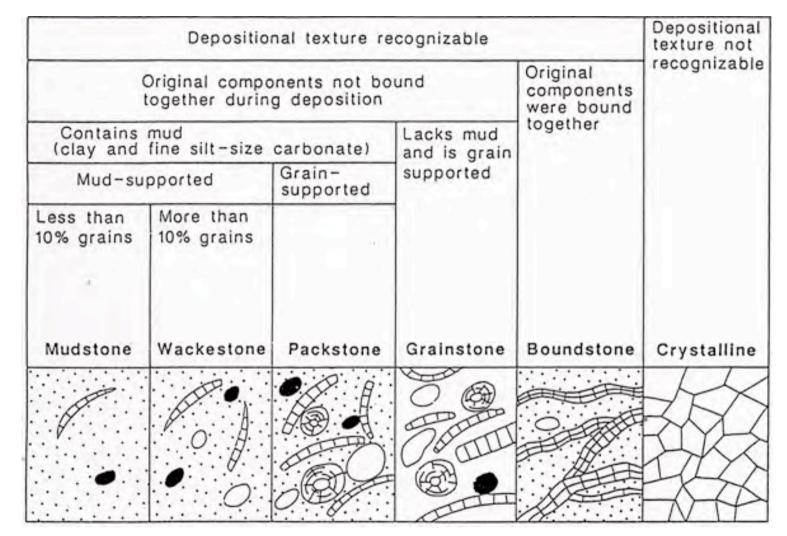

Concept and textural spectrum of the Folk classification (1959, 1962). Increasing maturity from left to right.

High water energy hinders deposition of fine-grained material (**'micrite, matrix**') and favors the sedimentation of winnowed sands with large amounts of pore space that is later filled with sparry calcite (**cement, sparite**). The most important environmental break is between limestones with a lime-mud matrix and those with calcite cement, because this should reflect the point where water energy becomes turbulent enough to wash out (winnow) the lime mud, keep it in suspension and carry it into lower energy zones.

10.000 Aug. 10.000	Over	2/3 Lime	Mud Matrix		Subequal	Over	2/3 Spar	Cement
Percent Allochems	0 - 1 %	1 - 10 %	10 - 50 %	over 50%	Spar and Lime Mud	Sorting poor	Sorting good	Rounded and abraded
Representative Rock Terms	Micrite	Fossil- iferous Micrite	Sparse Biomicrite	Packed Biomicrite	Poorly washed Biosparite	Unsorted Biosparite	Sorted Biosparite	Rounded Biosparite
		-)						
1959 Terminology	Micrite	Fossil- iferous Micrite	B	liomicrite		Bios	sparite	
Terrigenous Analogues	Clayst	tone	Sandy Claystone	Claye Immature	ey or Sandstone	Submature Sandstone	and the second	Supermature

Concept and textural spectrum of the Folk classification with terrigenous analogues.

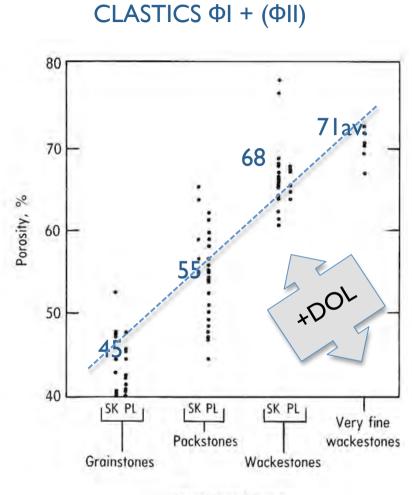
			Terrigenous	
	Matrix-support	rted	Gr	ain-supported
Sand: < 10%	10-25%	> 25%		
	sandy	WACKE	SUBWACKE	ARENITE
MUD	STONE		SANDSTONE	



Concept and textural spectrum of the Folk classification (1959, 1962).

A. PREAT U. Brussels/U. Soran

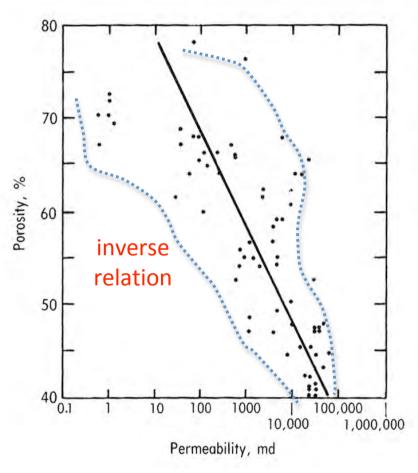
CLASSIFICATION OF CARBONATES


a long story

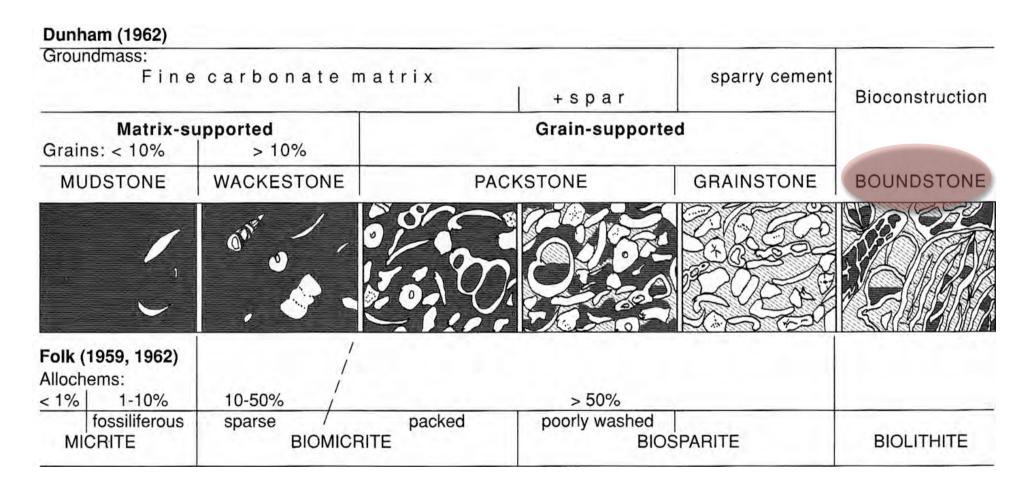
DUNHAM (1962) : THE MOST WIDELY USED CLASSIFICATION

It can equally well be applied in the field, in investigation of cores and in laboratory studies (thin sections). It is necessary to determine what constituents occur (grain categories, matrix, cement types) AND whether the constituent grains are grain- or mud-supported.

A. PREAT U. Brussels/U. Soran

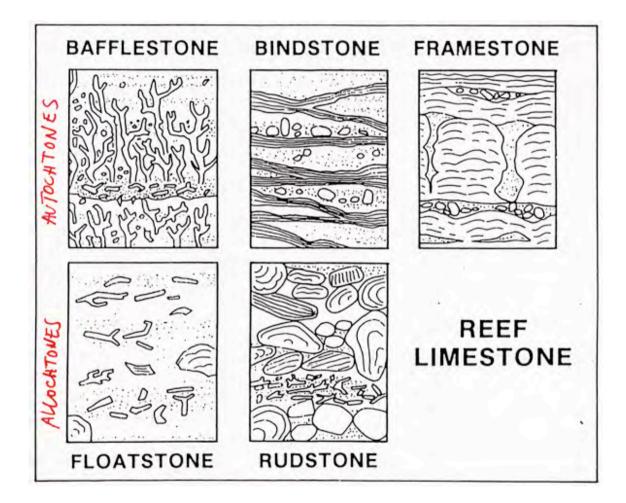


CARBONATES (ΦΙ) + ΦΙΙ


Depositional Texture

Primary depositional porosity in various Holocene carbonate sediment textural types (Enos & Sawatsky 1981)

CARBONATES ΦII≠K CLASTICS ΦI //K

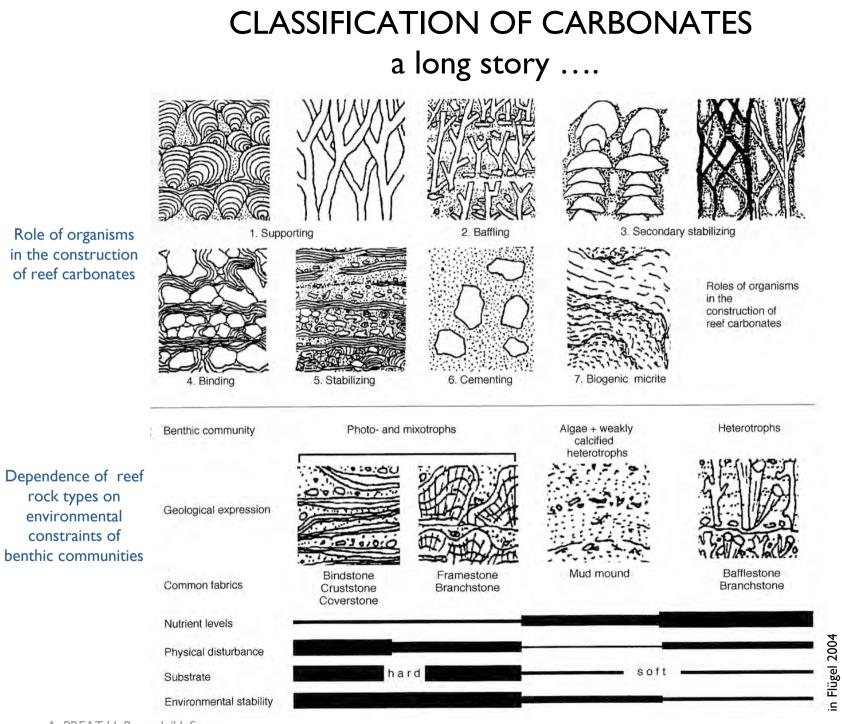


Porosity-permeability plot of Holocene carbonates (Enos & Sawatsky 1981)

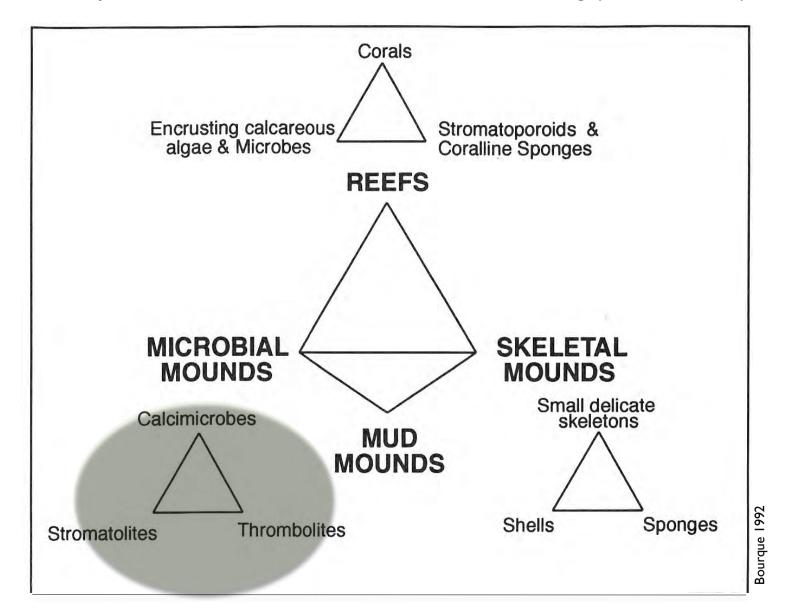
The DUNHAM classification stresses the DEPOSITIONAL fabric. The FOLK classification tries to evaluate HYDRODYNAMIC conditions. Both classifications consider the dominant groundmass types.

EMBRY & KLOVAN 1971 : AUTO/ALLOCHTHONOUS REEF LIMESTONES

EMBRY & KLOVAN specify **HOW** the organisms contribute to rock-building processes => significance of reef builders for the buildup of reefs

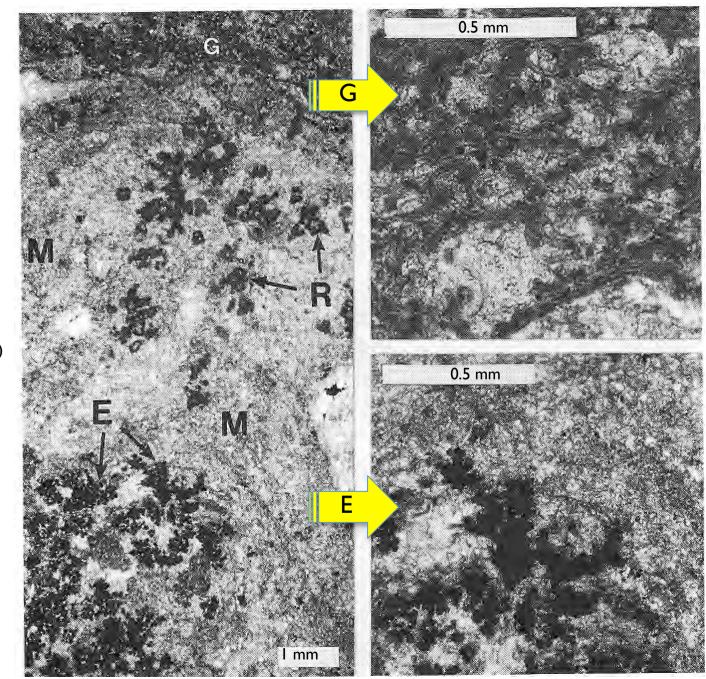

CLASSIFICATION OF CARBONATES

a long story


EMBRY & KLOVAN 1971 : AUTO/ALLOCHTHONOUS REEF LIMESTONES

DUNHAM 1962

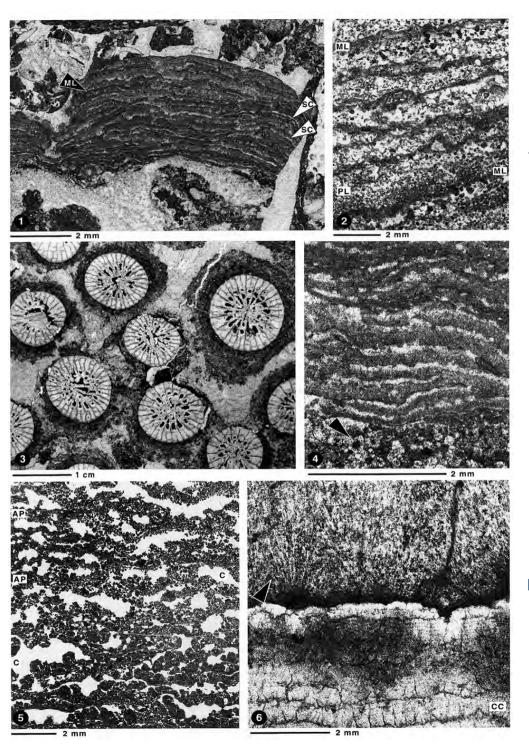
Original components not bound together during deposition			Original compo- during deposition	nents were bound on	Original components not bound together during depo sition				
Generally smaller grains (arenite and silt size)							More than 10 percent <i>large</i> grains (rudite size)		
Contains mud (micrite matrix)			Lacks mud (sparite matrix)		Organisms act as sediment	Organisms act as frame-	Contains mud	Lacks mud	
Less than 10 percent grains	More than 10 percent grains			bafflers (e.g., dendroid corals)	binders (e.g., algal mats)	builders (e.g., intergrown reef corals)	(micrite matrix)	(sparite matrix)	
Mud-supported		Grain	Grain-supported		Boundstone		Matrix- supported	Grain- supported	
Mudstone	Wackestone	Packstone	Grainstone	Bafflestone	Bindstone	Framestone	Floatstone	Rudstone	



A. PREAT U. Brussels/U. Soran

Conceptual classification of reefs and mounds including ('microbialites')

CACLIMICROBE BOUNDSTONE


Girvanella (G) Epiphyton (E) Renalcis (R) ?microbial spar and microspar (M) boundstone Cambrian, Canada, Bourque 1992

Flügel2004

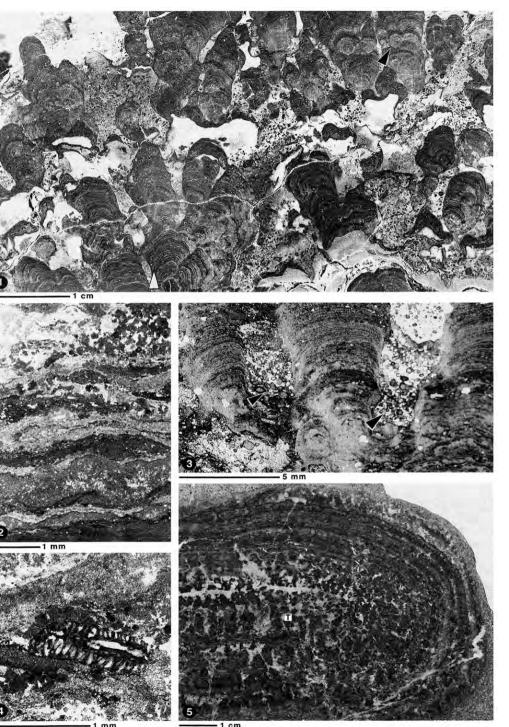
Skeletal stromatolite crust growing on a colonial reef coral. The crust consist of a **spongiostromate** micritic layer (ML) separated by porostromate cyanobacteria filled with sparry calcite (SC). *Late Triassic, Austria*

Microbial crusts around and between rugosa corals ⇒ stabilization and preservation of reef structures ⇒black spots between septa and calices = asphaltic pyrobitumen (thermic effects, burial). *Frasnian, Germany*

Agglutinated microbialite (amalgamated peloids AP) leaving space for spar-filled cavities (C) forming a 'laminoid fenestral fabric' *Late Triassic, Slovenia*

Laminated fine-grained agglutinated stromatolite (trapping/binding the sediment) Thicker peloid layers (PLand thinner ones (ML) Late Triassic, Austria

'Spongiostromate' stromatolitic crust covering the wall of a cryptic reef cavity. Late Triassic, Austria


Tufa stromatolite (cement/algal bindstone) Alternation of thick layer of bladed elongate calcite cement (CC) and layers of radiating bundles of algal threads (arrow). Schizohaline near-coastal environment. Tertiary, Egypt

Flügel2004

Lacustrine columnar stromatolite. Could be up to several meters thick. The columns are laminated and larger columns consist of small-sized stromatolite (black arrow). Early Permian, Germany

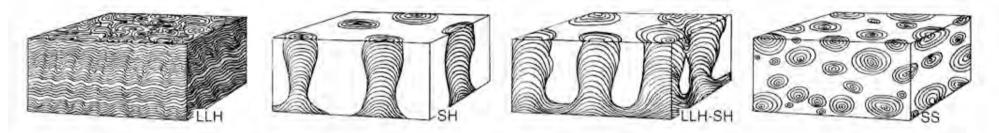
Irregularly laminated mudstone and peloid mudstone with syngenetically deformed layers. Marine environment *Early Permian, Germany*

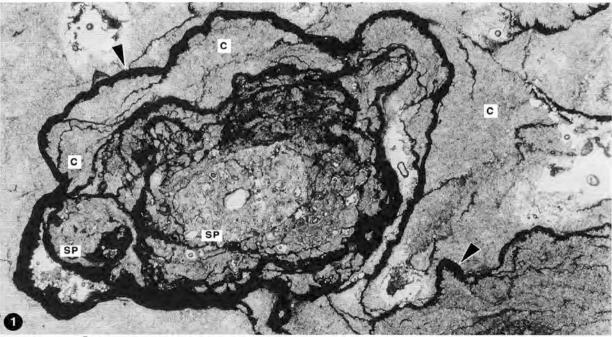
Marine green and red algae in lacustrine sediments *Early Permian, Germany*

Stromatolite boundstone with infillings of micro-oncoids (arrows) (high-energy shoreline/ nearshore environments) Early Permian, Germany

Lacustrine oncoid with thrombolite (T) microstructure = coccoid and filamentous microbes Early Permian, Germany

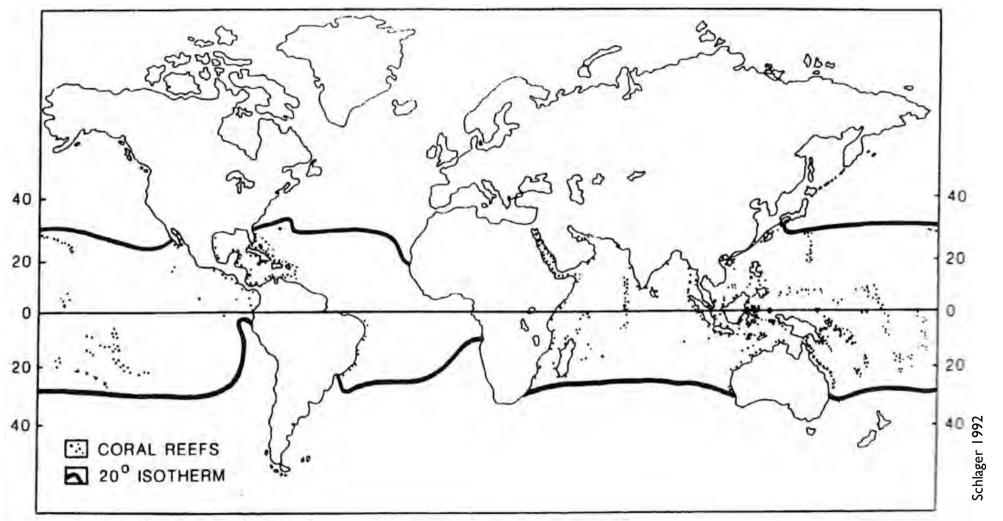
38





Fig. 9.3. Stromatolite classification after Logan et al. (1964). The classification is based on basic geometric forms expressed by the vertical and lateral arrangement of hemispheroids. Stromatolite growth forms as well as the shape of the lamination is described by symbols and formulas. These symbols can be used in the field and in the laboratory to describe thin sections and polished sections. LLH: Laterally Linked Hemispheroids with laminae whose domes are either Closely packed or Spaced somewhat apart (subtypes LLH-C and LLH-S). SH: Stacked Hemispheroids forming columns that are separated by sediment. The domes of the laminae have either a Constant diameter or Various widths (subtypes SH-C and SH-V). SS: Spheroidal Structures around a nucleus (corresponding to oncoids). Subtypes are SS-C (characterized by a Concentric structure; normal oncoid), SS-R (laminae Randomly overlapping), and SS-I (Inverted; laminae facing each other as concentric hemispheres), see Fig. 4/15. Mixed geometric forms can be indicated by a linear combination of symbols, e.g. LLH-SH. The relations of growth forms and microstructure is expressed by a fraction, whereby the numerator describes the macrostructure seen in the field and in hand specimens, and the denominator the microstructure seen on a smaller scale as in thin sections.

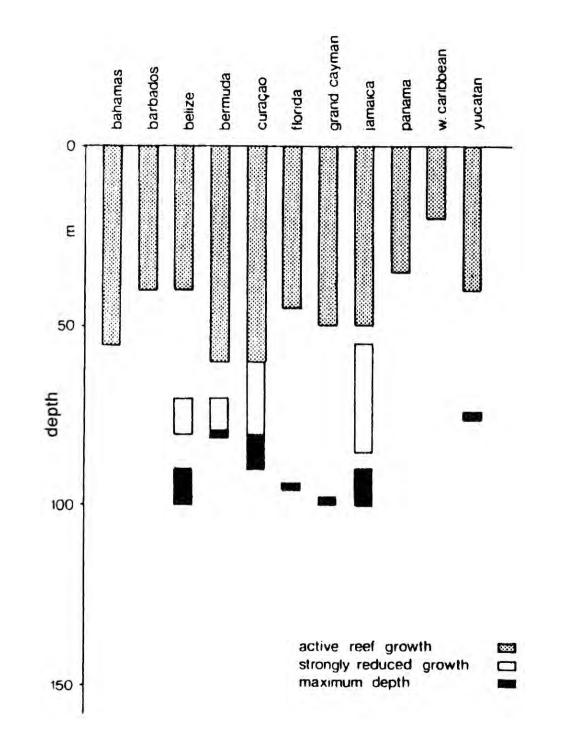
Flügel 2004

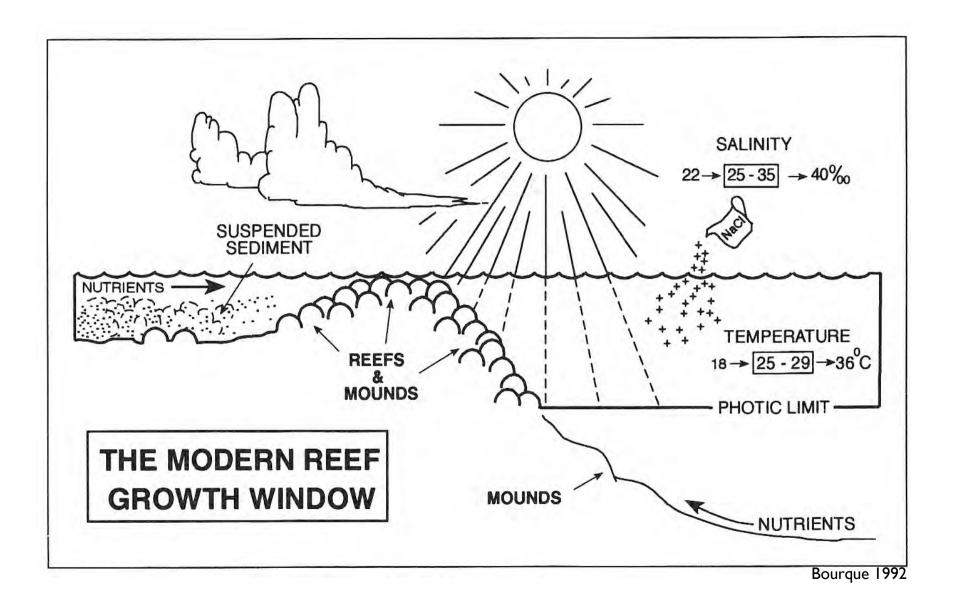
Pisoid rudstone Arrows point to vadose cements Carlsbad Cavern, New Mexico, USA

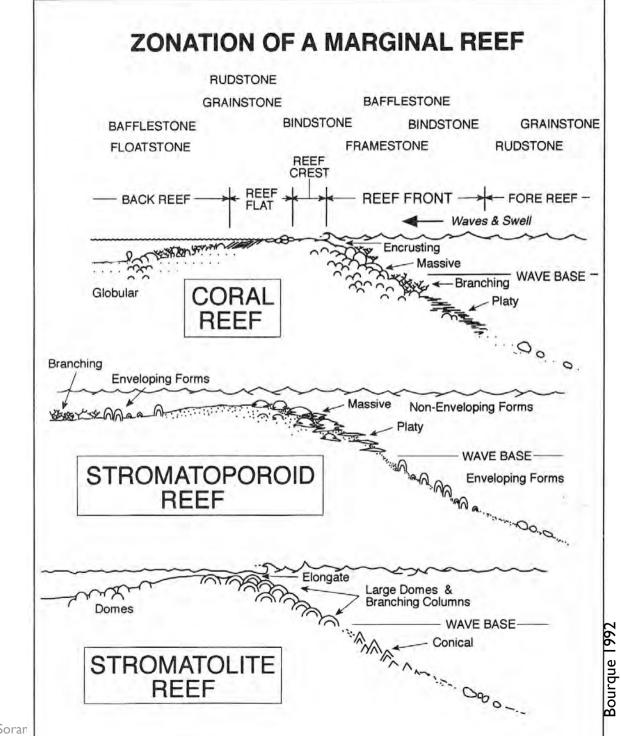


'Cemenstone' submarine, originally aragonitic radial-fibrous cement (C) formed synchronously with biogenic crusts (red algae) (arrows) growing on sponges (SP) as well on cements. Late Permian, Upper Capitan Limestone, USA

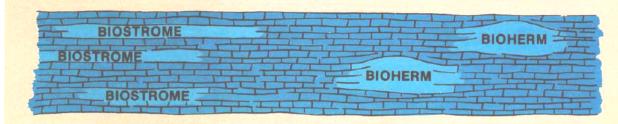
_____ 5 mm


MODERN CORAL REEFAL CARBONATES

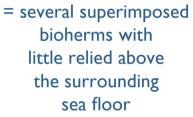



Distribution of recent coral reefs is limited in the north and south by **minimum** winter temperatures

MODERN CORAL REEFAL CARBONATES



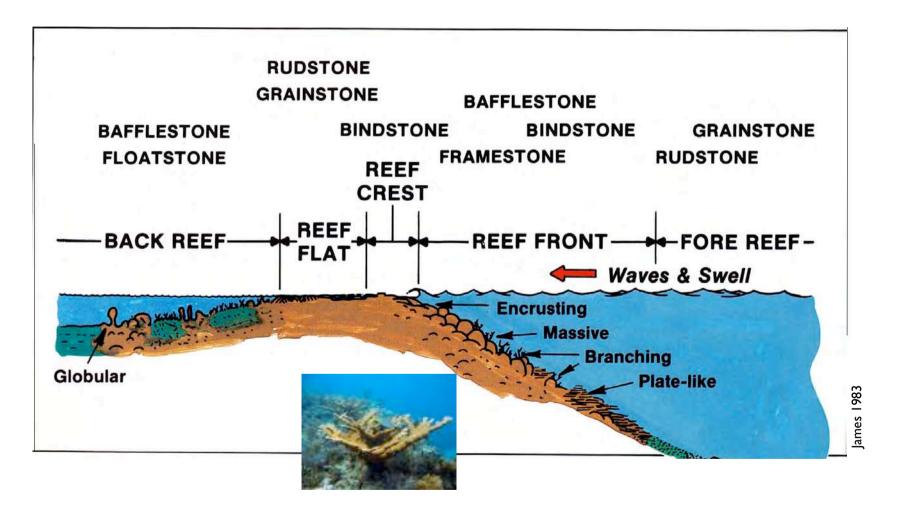
L. = lenght T. = thickness


bedded unit L. 100m'-100'km Th. m-10'm

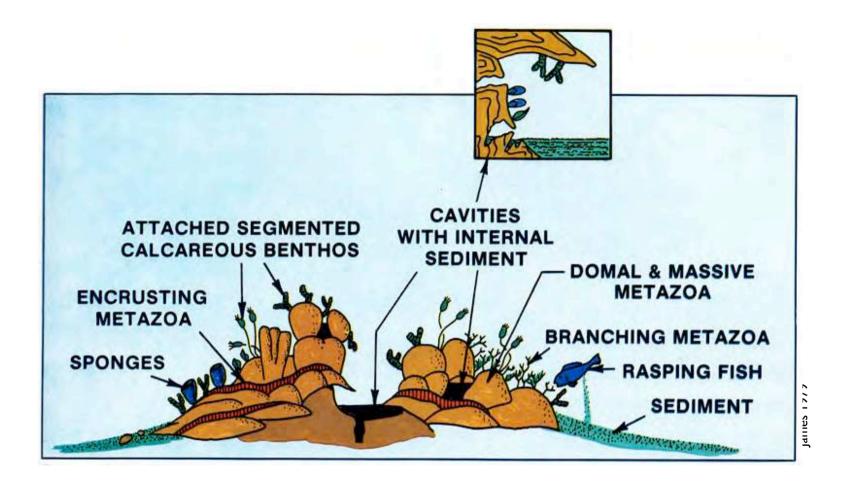
REEFAL CARBONATES also a long story

STRATIGRAPHIC

lens-like body L./Th. = same magnitude



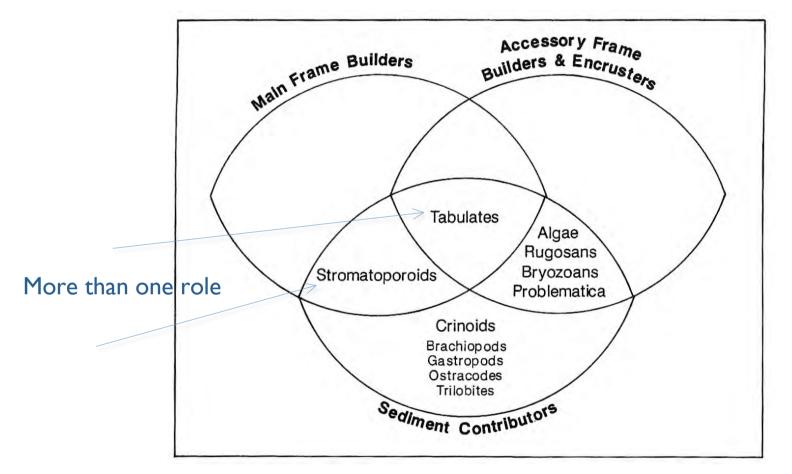
REEF COLOGIC REEF


= rigid, wave-resistant topographic structure generally formed during one specific period of tile

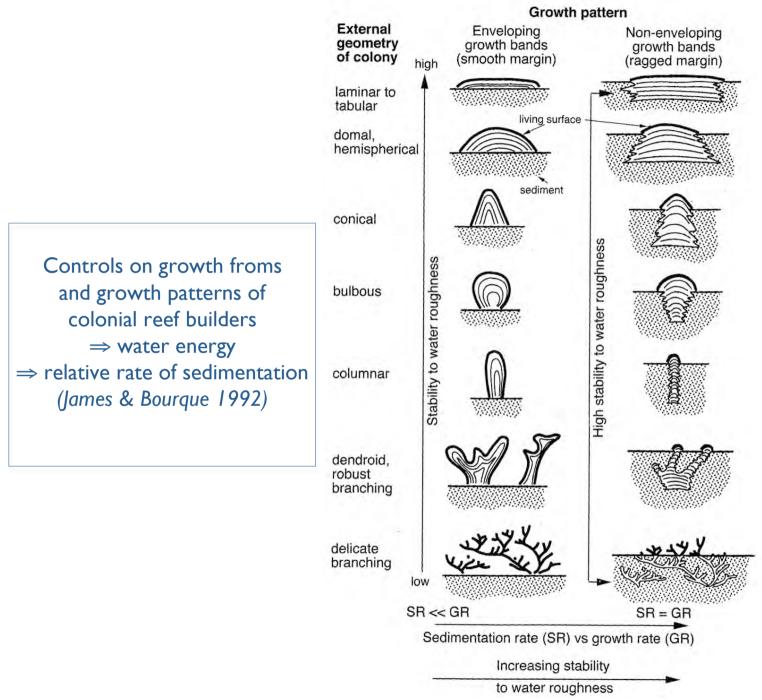
James 1983

		ENVIRO	NMENT
GRC	OWTH FORM	Wave Energy	Sedimentation
****	Delicate, branching	low	high
~	Thin, delicate, plate-like	low	low
e .1	Globular, bulbous, columnar	moderate	high
¥17	Robust, dendroid, branching	mod-high	moderate
	Hemispherical, domal irregular, massive	mod-high	low
and the second	Encrusting	intense	low
	Tabular	moderate	low

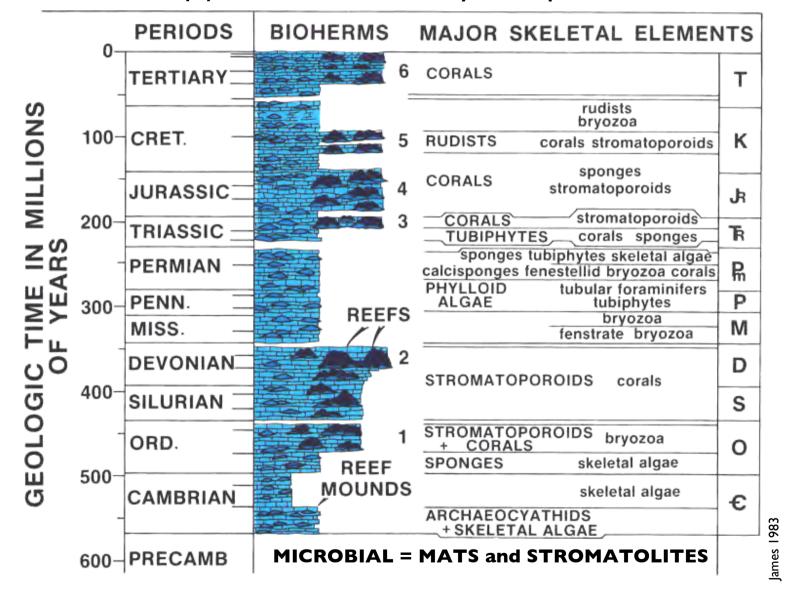
Cross-section through a zoned marginal reef. In many MODERN reefs, the reef crest is occuped by the massive *Acropora palmata*.



A reef is a mosaic of organisms/sediments, with very abundant **BIO**erosion and PHYSICAL erosion (waves, currents, storms). The reef is a mixture of 'altered' parts and in place 'autochthonous' organisms


<u>Reef types and role of the various organisms involved</u>. Stromatolites can act as frame-builders while microbial mats acts as ballflers, binders and precipitators (*in* Tucker & Wright 1990)

	Frame-Built	Reef	Mounds	Mud Mounds
	Corals Stromatoporoids Red algae Stromatolites	Bryozoans Phylloid algae Sponges	Codiacean algae Seagrasses Crinoids	Microbial mats
		Stow & Long	W & M	
Frame-builders		<u> Marina Marina an</u>		
Sediment contributors	<u>elenne ar an an</u>			
Bafflers	Crustose coralline alg			
Binders				
Precipitators		<u>annan ann an</u> n ann an ann an an ann an ann an		

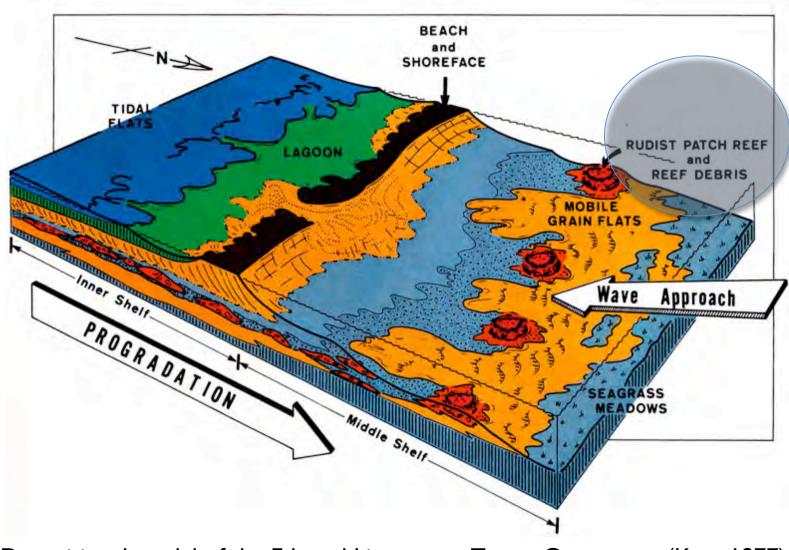

Principal **sedimentological** roles of **calcified** organims in Silurian of Europe (Riding, 1981)

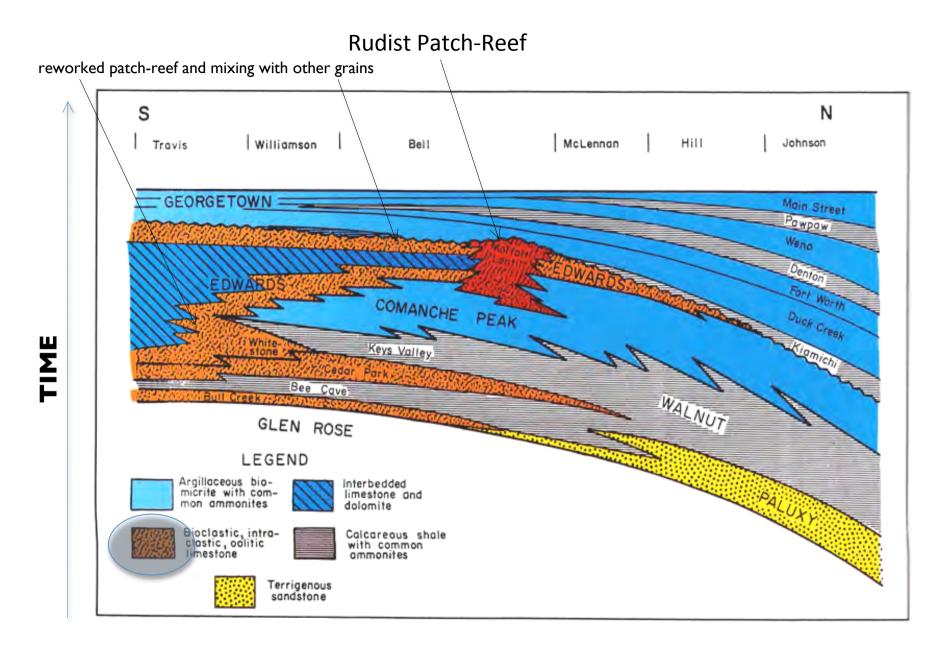
Red algae (solenoporaceans) were abundant in these reefs, but **unlike** crustose coralline algae in modern-day reefs, they were **not able to encrust** and acted as accessory frame-builders. <u>The encrusting role was filled by *problematica* and <u>stromatolites</u>.</u>

nb Tubiphytes : microfossil of unknown systematic position = 'encruster'

Stromatolites, Slc, Neoproterozoic Congo-Brazza Préat 2012

Stromatolites SIIIc, Neoproterozoic Congo-Brazza Préat 2012




LLH-Stromatolites and microbial mats (partially silicified) Sc3, Neoproterozoic, Nyanga basin, Gabon

Present-day stromatolite (and fish nursery) in Shark Bay, Australia

Depositional model of the Edward Limestone, Texas, Cretaceous (Kerr 1977)

Cross section along the 'Edwards' Limestone, Texas, Cretaceous (Rose1972). Upward shoaling facies in a northerly direction.

A. PREAT U. Brussels/U. Soran

CLASSIFICATION OF CARBONATES a long story

Expanded classification (Dunham 1962, Embry & Klovan 1971)

			D	epositional tex	ture recognizab	le				Depositional texture not recognizable
			nents not bound ng deposition	1		(Driginal compon bound durin		· .	
(clay and	Contains mud fine silt-size ca		Lacks mud and is grain-	>10% gra	iins >2mm			1.1.1.1		
Mud-su	pported	Grain- supported	supported	Matrix- supported	Supported by >2mm]	By organisms which act	By organisms which encrust	By organisms which build	
Less than 10% grains	More than 10% grains				component		as baffles	and bind	a rigid framework	
Mudstone	Wackestone	Packstone	Grainstone	Floatstone	Rudstone	Boundstone	Bafflestone	Bindstone	Framestone	Crystalline
	0					0				
	O	0.00	Bonnin III			10 cm	Tral an Ch		A	AA

CLASSIFICATION OF CARBONATES : SYNTHESIS Dunham 1962, Embry & Klovan 1971, Wright 1992

CLASSIFICATION OF LIMESTONES (DUNHAM 1962)

		DEPOSITIC	ON TEXTURE REC	OGNIZABLE	DEPOSITIONAL TEXTURE
Original co	omponents not b	ound together durin	ng deposition	Original components	NOT RECOGNIZABLE
(particle	Contains mud es of clay and fin	A DECEMBER OF A	Lacks mud and is	were bound together during deposition as shown	
Mud-sup	ported	Grain-supported	grain-	by intergrown or lamination	CRYSTALLINE CARBONATE
less the 10% grains	more than 10% grains		supported	contrary to gravity, sediment-floored cavities that are roofed over by organic or questionable organic matter and are too large to be interstices	(Subdivide according classification designed to bear on physical texture or diagenesis)
MUDSTONE	WACKESTONE	PACKSTONE	GRAINSTONE	BOUNDSTONE	

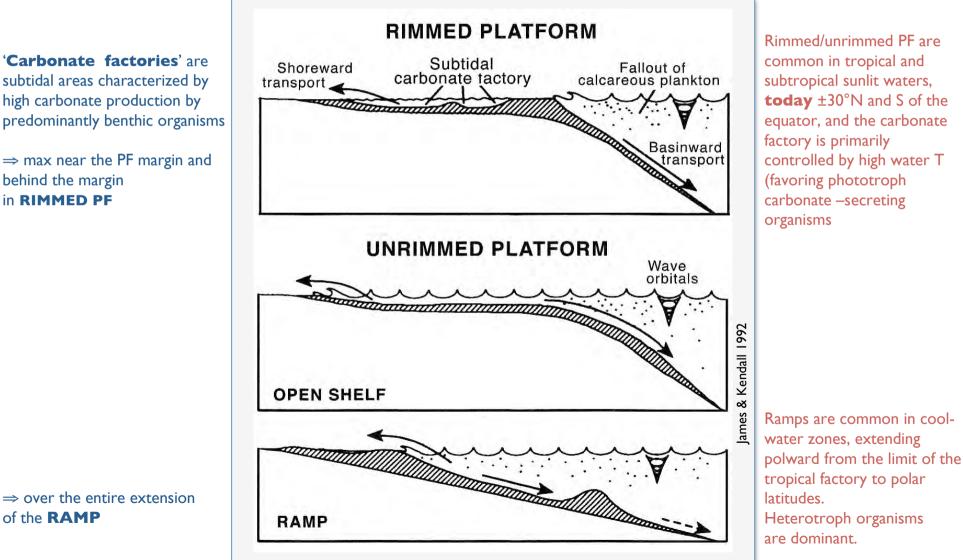
EXPANDED CLASSIFICATION (EMBRY and KLOVAN 1971)

	ORIGINA	L COMPONENTS	HTHONOUS LIME S NOT ORGANICA D DURING DEPOS	LLY ORIGINAL		AUTOCHTHONOUS LIMESTONE COMPONENTS ORGANICALLY BOUND DURING DEPOSITION			
	10% > 2 mm co lime mud (< 0.0		no lime mud	Greater than compon		n by organisms which			
Mud support		Grain-su	upported	Matrix-	> 2 mm	build	encrust	act	
less than 10% grains (> 0.03 mm and	greater than 10% grains			supported	component supported	a rigid framework	and bind	as bafflers	
< 2 mm)			1 To 1 1 To 1			BOUNDSTONE			
MUDSTONE	WACKESTONE	PACKSTONE	GRAINSTONE	FLOATSTONE	RUDSTONE	FRAMESTONE	BINDSTONE	BAFFLESTONE	

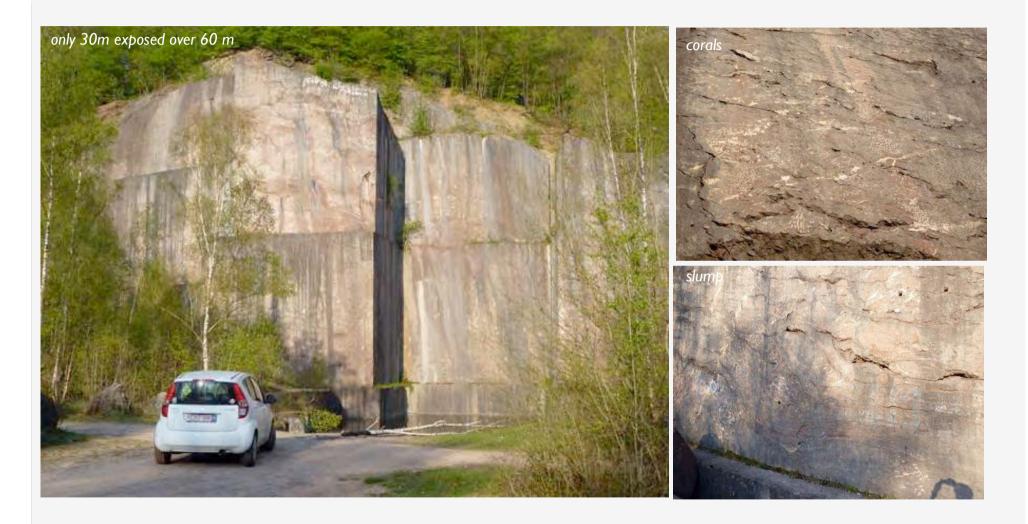
REVISED CLASSIFICATION (WRIGHT 1992)

	DEPOSITIO	NAL		1	BIOLOGICAL					
	Mixed supported Grain-support clay and silt grains)		upported	In situ organisms				Obliterative		
< 10% grains	> 10% grains grains	with matrix	no matrix	rigid organisms dominant	encrusting binding organisms	acted to	main component in cement	many grain contacts micro- stylolites	most grain ascontacts are micro- stylolites	> 10 µm
CALCI-	WACKE- -STONE	PACK-	GRAIN- -STONE	FRAME- -STONE	BOUND- -STONE	BAFFLE-	CEMENT- -STONE	CONDENSED	FITTED	SPARSTONE
. Brussels/U	FLOATSTONE	RUDSTC ains > 2 n								Crystals < 10 μm MICRO- -SPARSTONE

Flügel 2004


6

Limestone Type	Limestone	Minutian		Texture		Persoil Alternationer	Characteristic Festila	
According to Energy Index	Sub-Types	Mineralogy	abr	Sertine	Roundacts	and Campbridge	Found Preservation	
nge	In Calcite Clay (15 to Detrital qua		Microcrystalline carbonate (< 0.06 mm) or any size lossil fragments in	Matrix-good		Barren to moderately fossiliferous	Crinoids; echinoids; bryozoans (fragile branching types); solitary corals; ostracodes; thin-shelled brachiopods, pelecypods, and gastropods; Foraminifera; sponge spicules; tubular encrusting and sequence-binding	
QUIET Deposition in quiet water	Is.	Calcite (predominant) Clay (<15%)	a microcrystalline carbonate ma- trix (matrix <50%)	Fossils-poor	Fossils-poor angular fragments if bunken		tubular, encrusting, and sediment-binding algae; fecal pellets of bottom scavengers. Common fossil associations are crinoid bryozoa assemblages, bivalve shell assem- blages, Foraminifera assemblages (predomi-	
tit	h	(<1376) Detrital quartz (<5%)	Any size fossil fragments in micro- crystalline matrix (matrix <50%)	Matrix—good Fossils—moderate to good		Moderately to abun- dantly fossiliferous Simple assemblages (coquinoid limestone)	nantly planktonic). Many fossils are whole and unbroken and are not mechanically abraded. Any fragmen- tation of fossil material probably is due to disarticulation upon death, to predatory (boring, opening, and breaking) activity and scavenger activity, or to solution.	
NTERMITTENTL	11,		Microcrystalline matrix (>50%). Mi- crograined to medium-grained clas- tic carbonate and terrigenous material	Matrix—good Clastic material—	Clastic carbonate material subangular to rounded.	Barren to moderately fossiliferous, Moder-	Characteristic fossils and fossil associa- tions are similar to Type I limestones.	
Depositionalternately in agitated water and	Us '	Calcite (predominant) Clay (<25%) Detrital quartz (<50%)	Microcrystalline matrix (>50%). Coarse- to very coarse-grained clas- tic carbonate and terrigenous material	poor to good	Roundness of terrig- enous clastics is principally a function	ately simple assemblages		
in quiet water	16		Interbedded microcrystalline car- bonate and any size clastic. Micro- scale rhythmic bedding	Sorting good with- in individual lam- ina	of size. Oölites may be pres- ent	Barren to moderately fossiliferous. Moderately complex assemblages	environments may be present.	
1 M- 41	111,		Micrograined clastic carbonate (<0.06 mm) predominates	Matrix-good Clastic material-	9	Barren to sparsely fossiliferous Simple assemblages	F 12 1 1	
SLIGHTLY AGITATED	III	Calcite (predominant) Detrital quartz (up to 50%)	Very fine-grained clastic carbonate (0.06 to 0.125 mm) predominates	moderate to good	Clastic material sub- rounded to well	Barren to moderately fossiliferous Simple assemblages	Echinoderm, bryozoan, and bivalve shell debris; Foraminilera; encrusting algae. Common fossil associations are Forami- nilera-abraded biv alve shell fragment assem-	
Deposition in slightly agitated water	111,		Fine-grained clastic carbonate (0.125 to 0.25 mm) predominates	Matrix—poor Clastic material— moderate to good	Fine-grained oölites may be present	Barren to abundantly fossiliferous Simple to moderately complex assemblages	blages. Fossil materials comminuted from larger fossil structures are well abraded by wave and current action.	
nehry	IVi		Medium-grained clastic carbonate (0.25 to 0.5 mm) predominates		1999	Moderately to abun- dantly fossiliferous	Crinoids, echinoids, bryozoans, brachio- pod and pelecypod shell fragments, colonial coral fragments, stromatoporoid fragments	
MODERATELY AGITATED	11/1	Calcite (predominant) Detrital quartz (up to 50%)	Coarse-grained clastic carbonate (0.5 to 1.0 mm) predominates	Matrix—poor Clastic material— moderate to good	Clastic material sub- rounded to well rounded. Oblites	Simple to moderately complex assemblages	(Silurian and Devonian predominantly); tu- bular algal (ragments, colonial algal (rag- ments (rare), encrusting algae. Common lossil associations are similar to	
Deposition in moder- ately mitated water			Very coarse-grained clastic carbon- ate (1.0 to 2.0 mm) predominates		may be present	Moderately to abun- antly fossiliferous Moderately complex to complex assemblages	associations of Types I, II, and III, or they are mixtures of these associations. Fossil materials are generally broken and abraded.	


Limestone Type According to	Limestone	Mineralogy		Texture		Fossil Abundance	Characteristic Fossils
Energy Index	Sub-Types	Mineralogy	Size	Sorting Roundness		and Complexity	Fossil Associations Fossil Preservation
Veridle	Vt	Calcite (predominant) Clay (<5%)	Gravel-size clastic carbonate (rock fragments and fossil material >2.0 mm) predominates	Matrix—poor Clastic material— poor to moderate	Clastic material sub- rounded to well rounded. Pisolites may be present	Sparsely to moderately fossiliferous Complex assemblages	Crinoids; echinoids; encrusting bryozoans; thick-shelled brachiopods, nelecypods, and gastropods; colonial coral fragments; stro- matoporoid fragments (Silurian and Devo- nian predominantly); colonial algal frag- ments; rudistid fragments (Cretaceous pre-
AGITATED Deposition and growth in strongly agitated water	V3	Detrital quartz (<25%)	Gravel-size conglomeratic or brec- ciated carbonate (>2.0 mm) Tectonic breccias excluded	Matrix—poor Clastic material— poor	Clastic material angular to well rounded	Barren to sparsely fos- siliferous Complex assemblages	dominantly). Fossil associations are similar to Type IV associations. Fossil materials are generally broken and abraded.
A. PREAT U. Bru	Va ussels/U.	Calcite Sorome Shitter	Not applicable	Not applicable	Not applicable	Abundantly fossiliferous Simple assemblages (fossil colonial growth in place)	Colonial corals, stromatoporoids, colonial algae (principally the Rhodophyta or red algae and some genera of the Cyanophyta or blue-green algae). 62

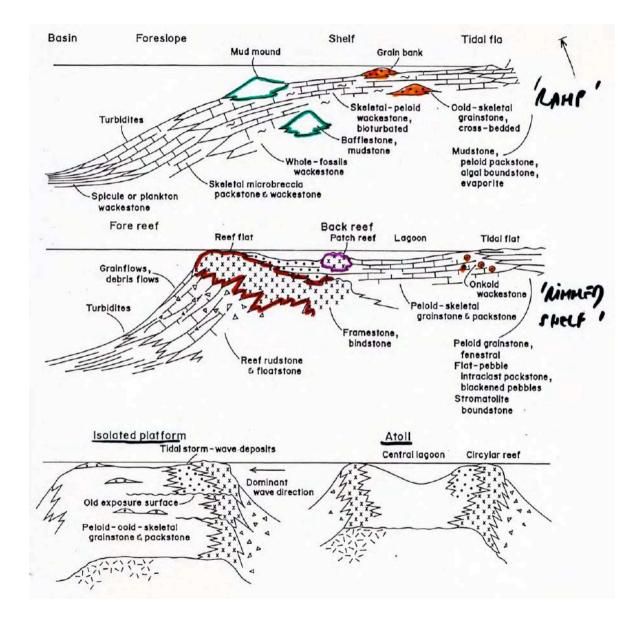
CARBONATE SYSTEMS/MODELS

Ramps and platforms differ in their geometry, depositional depths and distribution patterns of facies zones. They are controlled by variations in biogenic production as well as by fluctuations in both sea level and in accomodation and sedimentation rates. Microfacies reflect short-term environmental changes and high sealevel fluctuations as well as long-term patterns in the formation of carbonate buildups.

Schlager 2000 differentiated a third carbonate factory = **MUD MOUNDS** characterized by the in situ production of biotically induced and abiotic carbonate mud

Example : Red Mud Mounds/Bioherms, F2ij (Frasnian), Belgium In situ production by **IRON-BACTERIA**

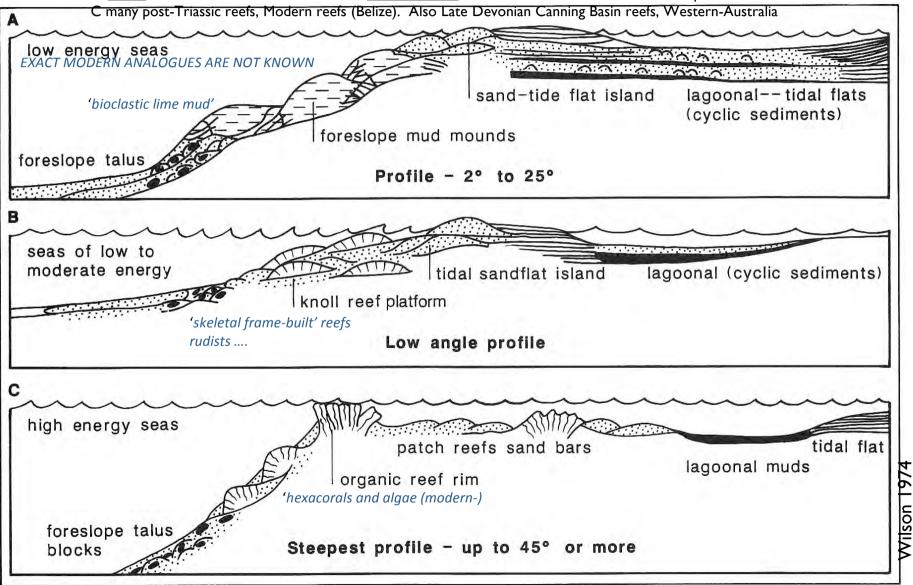
A. PREAT U. Brussels/U. Soran


CARBONATE SYSTEMS/MODELS

1.1		Latitudinal range	Sea-water temperature	Sub- division	Latitudinal range	Sea-water temperature	
Carbonates an	POLAR CARBONATES	>50° N and S	Cold water <5 -10 °C (mean)	polar	>60° N and S (to >70° N)	>5 °C	Beyond the Arctic Circle: Central Greenland Sea, Barents Sea, Ross Sea, Antarctica
0			-1.5 to16 °C - (range)	subpolar	>50° to <60° N and S	5 - 10 °C	 Arctic eastern Canada, — Northern Norway, Western Canadian Shelf Northwestern Europe —
NON-TROPICAL Heterozo	TEMPERATE CARBONATES	30° - 50° (60°) N and S	Cool water ~10 -18 °C (mean)	cool- temperate	30° to 50° N and S	5 - 10 °C	Southern Australia, Tasmania, New Zealand
Ż			>10 to 25 °C (range)	warm - temperate	25° to > 30° N 25° to 30° S	10 - 18 °C	Mediterranean Sea, Off North Africa, Southwestern Australia
ICAL Carbonates Photozoan	TROPICAL CARBONATES	30°N to 30°S	Warm water 18 to >22 °C (mean)	subtropical		18 - 22 °C	Bahama, Florida, Bermuda, Persian Gulf, Shark Bay
TROPICAL Photo			18 to 30 °C (range)	tropical		>22 °C	Great Barrier Reef, Indian Ocean, Pacific

Latitudinal distribution and critical sea-water temperature of **MODERN** tropical carbonates, temperate and polar carbonate settings. Cool-water carbonate can also form in tropical regions, where cold currents reduce sea-water temperatures (off the east of S America, off the west coast of Africa and southern Asia) (from Flügel, 2004).

CARBONATE SYSTEMS/MODELS



Three types of carbonate shelf margins

A downslope lime-mud accumulation **B** knoll reef ramp or platform **C** organic reef

A Capitan Fm, Permian Reef West texas/New Mexico...+ Waulsortian mounds of Europe (<u>BELGIUM</u>) and N-Amarica...

B Rudist reefs Middle Cretaceous S-Texas, MIDDLE EAST, M-U Dev Canada, Modern Bermuda platform ...

CARBONATE SYSTEMS/MODELS lateral classification of carbonate shelves....

Carbonate shelves

Inner shelf: Near-coast tide-dominated zone including peritidal and shallow subtidal environments varying and restricted salinity; sluggish circulation; biota low-diverse.

Mid-shelf: Extended shallow subtidal zone between the near-shore area and the shelf break; below fair-weather wavebase, but above storm-wave base; mud-dominated but with grainy storm sediments; water depths between a few tens of meters and 100 to 200 m; normal marine, but different conditions in local restricted areas; biota high-diverse.

Outer shelf: Rimmed shelves: A narrow zone near the shelf break, with shoals and reefs. Non-rimmed shelves: A wide zone below normal storm-wave base which may be affected by intruding ocean currents.

Carbonate ramps

Inner ramp: Between upper shoreface (beach or lagoonal shoreline) and fair-weather wave base; seafloor more or less constantly affected by wave agitation; includes shoreline deposits, sand-shoals, and back-barrier peritidal sediments.
 Mid-ramp: Between fair-weather wave base and storm-wave base. The bottom is frequently reworked by storm waves and swells. Sediment composition and textures reflect proximal-distal trends.

Outer ramp: Below normal storm-wave base, down to the basin plain. Mud-dominated, but with few storm beds. In deeper zones, restricted bottom conditions may develop.

Wilson & Jordan 1983, Burchette & Wright 1992

CARBONATE SYSTEMS/MODELS glossary of 'reefal' terms....

Bioherm: Mound or lens-shaped reefal buildup.

- Biostrome: Tabular rock body, usually a single bed of similar composition. Laterally extended, dense growth of skeletal organisms. No depositional relief. A rigid framework may or may not be present.
- **Buildup:** A carbonate rock mass that is thicker than laterally equivalent strata, and probably stood above the sea floor during some or all of its depositional history. The term is often very loosely used for reefs, banks or thick massive limestone structures.
- Ecologic reef: An ancient reef interpreted as having been built by organisms into a rigid, wave resistant, topographic high on the sea floor (Dunham 1970).

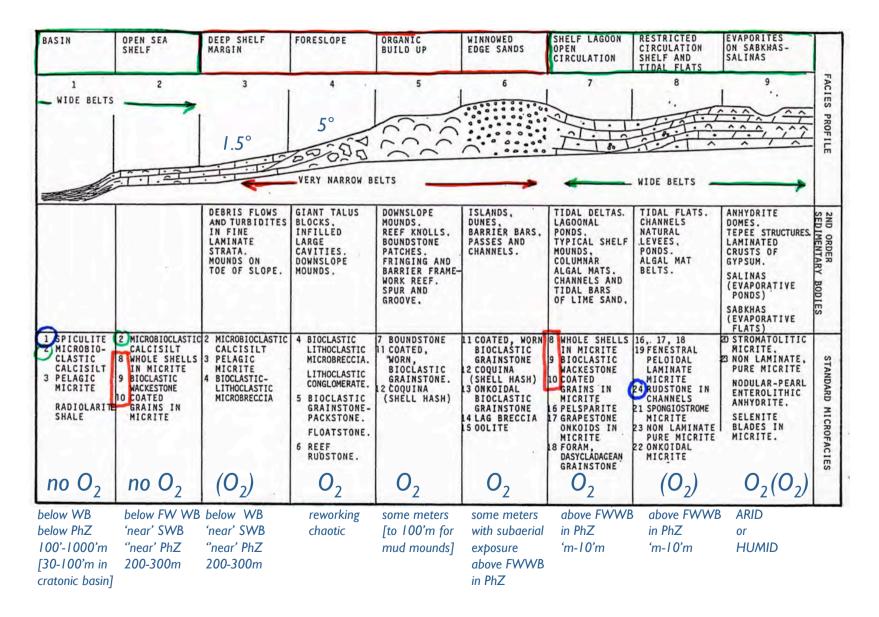
Framework reef: Built by organisms forming a rigid calcareous frame.

- Microbial mound: Biogenic mounds, formed by the action of microbes which initiate carbonate precipitation, and bind and trap sediment (James and Bourque 1992).
- Mound: A rounded hill-like structure. In the context of reef studies used for counterparts of framework reefs. See microbial mounds, skeletal mounds and mud mounds.
- Mud mound: Mud-dominated carbonate buildups (Wilson 1975), Organisms are minor constituents. Syndepositional relief.
- **Reef:** Laterally confined biogenic structures, developing due to the growth or activity of sessile benthic organisms and exhibiting topographic relief. This broad definition covers framework reefs, reef mounds, mud mounds as well as biostromes (Flügel and Kiessling 2002).
- **Reef mound:** Lenticular carbonate bodies consisting of bioclastic mud with minor accounts of organic binding (James 1980). Skeletal organisms are common, but there is no evidence for a prominent in situ skeletal framework. Lime mud/carbonate cement and skeletal organisms are about equally important. Syndepositional relief.
- Skeletal mound: Biogenic mounds made of small delicate skeletal or encrusting organisms that are thought to baffle, trap, bind and stabilize lime mud (James and Bourque 1992).
- Skeletal reef: Corresponds to framework reefs with organisms, forming a rigid calcareous framework.

Stratigraphic reef: A thick, laterally restricted mass of carbonate rock, without genetic connotations (Dunham 1970). in Flügel 2004

1975 First Synthesis

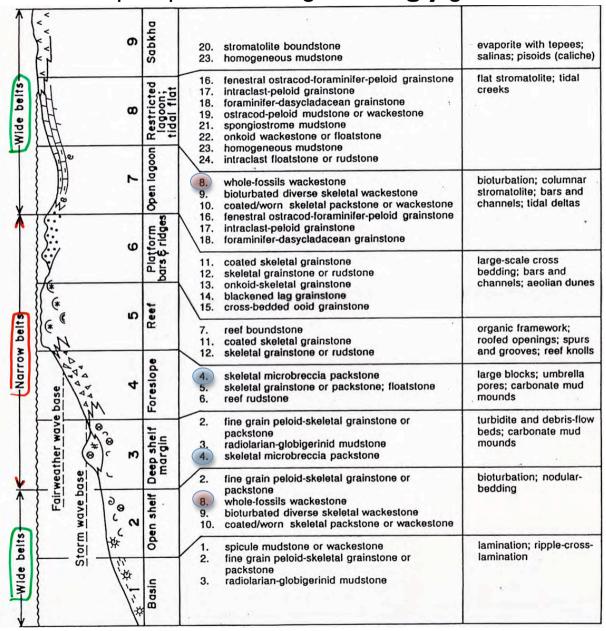
James Lee Wilson Carbonate Facies in **Geologic History** Springer-Verlag New York Heidelberg Berlin


of a rimmed tropical platform along a **strongly** generalized shore-to-basin transect

9 FACIES BELTS and 24 SMF Standard Microfacies Types

Scaled cross section									
Diagrammatic cross section			Kormal weve base		2 4 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Carbonate mi	uds evaporites.	. clastics
	Oxygenation leval	Store wave ber			reefal rudstones		Salinity	Increases	
Facies number		2	3	4	0	6	0	3	0
Facies	Basin (euxinic or evaporitic) a) Fine clastics b) Carbonates c) Evaporites Spiculite radiolarian shales	Open shelf (undaform) Open marine neritic a) Carbonates b) Shale microbioclastic calcisiltites	Toe of slope carbonates radiolarian pelagic micrites	Forestope a) Bedded fine grain sediments with slumps b) Foreset debris and lime sands c) Lime mud masses debris/slumps	Organic (ecologic) reef a) Boundstone mass b) Crust on accumulation of organic debris and lime mud; bindstone c) Bafflestone	Sands on edge of platform a) Shoal lime sands b) Islands with dune sands	Open platform (normal marine, limited fauna) a) Lime sand bodies b) Wackestone-mudstone areas, bioherms c) Areas of clastics	Restricted platforms a) Bioclastic wackestone, lagoons and bays b) Litho-bioclastic sands in tidal channels c) Lime mud-tide flats d) Fine clastic units	 Platform ecaparites a) Nodular anhydrite and dolomite on salt flats b) Laminated evaporite in ponds
Lithology	Dark shale or silt, thin limestones (starved basin); evaporite fill with salt	Very fossiliferous lime- stone interbedded with marls: well segregated beds	Fine grain limestone: cherty in some cases	Variable, depending on water energy upslope; sedimentary breccias and lime sands	Massive limestone- dolomite	Calcarenitic-oolitic lime sand or dolomite	Variable carbonates and clastics	Generally dolomite and dolomitic limestone	Irregularly laminated dolomite and anhydrite, may grade to red beds
Color	Dark brown, black, red	Gray, green, red, brown	Dark to light	Dark to light	Light .	Light	Dark to light	Light	Red, yellow, brown
Grain type and depositional texture	Lime mudstones; fine calcisillites	Bioclastic and whole fossil wackestones: some calcisiltites	Mostly lime mudstone with some calcisiltites	Lime silt and bioclastic wackestone-packestone: lithoclasts of varying sizes	Boundstones and pockets of grainstone: packstone	Grainstones well sorted; rounded	Great variety of textures; grainstone to mudstone	Clotted, pelleted mudstone and grainstone; laminated mudstone; coarse litho- clastic wackestone in channels	
Bedding and sedimentary structures	Very even mm lamination; rhythmic bedding; ripple cross lamination	Thoroughly burrowed: thin to medium: wavy to nodular beds: bedding surfaces show diastems	Lamination may be minor: often massive beds; lenses of graded sediment: lithoclasts and exotic blocks. Rhythmic beds	Slump in soft sediments; foreset bedding: slope bioherms; exotic blocks	Massive organic structure or open framework with roofed cavities: Lamination contrary to gravity	Medium to large scale crossbedding; festoons common	Burrowing traces very prominent	Birdseye, stromatolites, mm lamination, graded bedding, dolomite crusts on flats. Cross-bedded sand in channels	Anhydrite after gypsum; nodular, rosettes, chickenwire, and blades; irregular lamination; carbonate caliche
Terrigenous clastics admixed or interbedded	Quartz silt and shale; fine grain silstone; cherty	Quartz silt, siltstone, and shale; well segregated beds	Some shales, silt, and fine grained siltstone	Some shales, silt, and fine grained siltstone	None	Only some quartz sand admixed	Clastics and carbonates in well segregated beds	Clastics and carbonates in well segregated beds	Windblown, land derived admixtures: clastics may be important units
Biota	Exclusively nektonic- pelagic fauna preserved in local abundance on bedding planes	Very diverse shelly fauna preserving both infauna and epifauna	Bioclastic detritus derived principally from upslope	Colonies of whole fossil organisms and bioclastic debris	Major frame building colonies with ramose forms in pockets; in situ communities dwelling in certain niches	Worn and abraided co- quinas of forms living at or on slope; few indigenous organisms	Open marine fauna lacking (e. g. echinoderms, cephalopods, brachiopods): mollusca, sponges, forams, algae abundant; patch reefs present	Very limited fauna, mainly gastropods, algae, certain foraminifera (e. g. milio- lids) and ostracods	Almost no indigenous fauna. except for stromatolitic algae

Facies Belts = changes of sedimentology and biology across shore-to-basin transects SMF derived from **local** MF types looking at joint palaeontology and/or sedimentology


of a rimmed tropical platform along a **strongly** generalized shore-to-basin transect

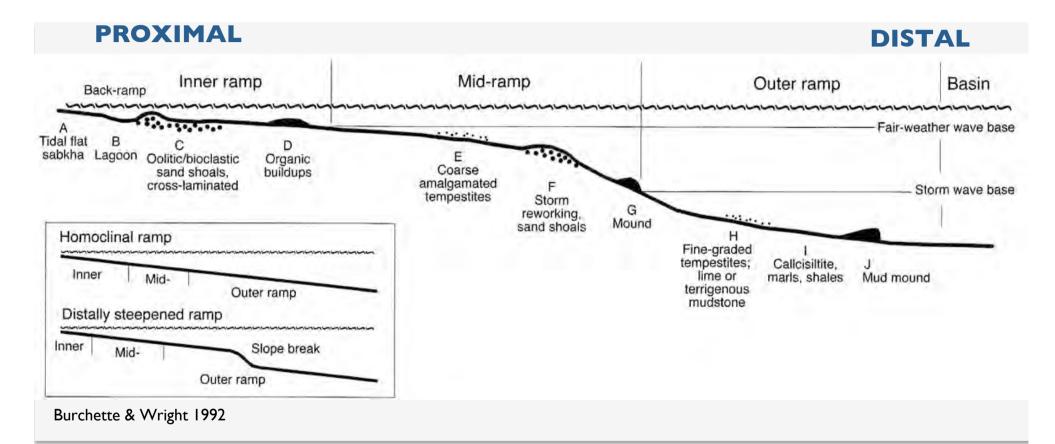
of a rimmed tropical platform along a **strongly** generalized shore-to-basin transect

Wide	belts	><		Narr	ow belt	3	>	<	t	Wide beits	
_	torn	n wave base	ather wave					18	H.H.e		~~~^
··· · · · ·	7	2	3	4		5	6	7		8	9
Basin	Op	en shelf D	eep shelf margin	Foreslop	e R	eef Pla bars	¢ ridges	Open lag	joon	Restricted lagoon; tidal flat	Sabkha
φŅ	».=)	9. 9. 10.	A. 3		11.	11. 11. 11.	17.		23.	16. 19. 22.	20.
nne gran perior-skerera gransione or packstone radiolarian-globigerinid mudstone	spicule mudstone or wackestone	fine grain peloid-skeletal grainstone or packstone whole-fossils wackestone bioturbated diverse skeletal wackestone coated/worn skeletal packstone or wackestone	fine grain peloid-skeletal grainstone or packstone radiolarian-globigerinid mudstone skeletal microbreccia packstone	skeletal microbreccia packstone skeletal grainstone or packstone; floatstone reef rudstone	reef boundstone coated skeletal grainstone skeletal grainstone or rudstone	coated skeletal grainstone skeletal grainstone or rudstone onkoid-skeletal grainstone blackened lag grainstone cross-bedded ooid grainstone	intraciast-peloid grainstone foraminifer-dasyciadacean grainstone	whole-fossils wackestone bioturbated diverse skeletal wackestone coated/worn skeletal packstone or wackestone foncetral octaond forgaminities packstone	homogeneous mudstone intraclast floatstone or rudstone	fenestral ostracod-foraminifer-peloid grainstone intractast-peloid grainstone foraminifer-dasycladacean grainstone ostracod-peloid mudstone or wackestone spongiostrome mudstone onkold wackestone or floatstone	stromatolite boundstone homogeneous mudstone
	lamination; ripple-cross-	bioturbation; nodular- bedding	beds; carbonate mud mounds	large blocks; umbrella pores; carbonale mud mounds	organic framework; roofed openings; spurs and grooves; reef knolls	bedding; bars and channels; aeolian dunes		bioturbation; columnar stromatolite; bars and channels; tidal deltas		flat stromatolite; tidal creeks	evaporite with tepees; salinas; pisoids (caliche)

of a rimmed tropical platform along a **strongly** generalized shore-to-basin

of a rimmed tropical platform along a **strongly** generalized shore-to-basin

The Wilson FACIES BELTS are limited to tropical platforms and do **NOT** consider platforms in **COOL-WATER** settings that often correspond better to non-rimmed platforms or ramps.


The Wilson model contains more Facies Belts (or 'Zones') than can normally be found on one platform => rimmed platforms usually exhibit a reduced number of Facies Belts, and often a different lateral arrangement of Facies Belts.

The WILSON MODEL was the first one established in the carbonate research.... It developed a static approach and a broad generalization of the carbonate settings \Rightarrow the model is just a snapshot illuminating potential depositional patterns and their lateral relationships....

=> **TODAY**: **dynamic models** describe the development of (micro)facies belts/ zones during time taking account into variations in water depth related to sea-level fluctuations, accomodation space and biogenic production...

THE CARBONATE RAMP MODEL – AHR1973

and many others authors

A carbonate ramp is a gently dipping sedimentary surface on the sea floor. The FACIES BELTS are controlled primarily by **ENERGY LEVELS** (FWWB & SWB), variations in ramp topography and material transport by storms, waves and tides. The depositional slope is usually **less than I°** (a few m/km).

THE CARBONATE RAMP MODEL – AHR1973

Carbonate ramps can develop during the drowning of shelves and during the early stages of platform formation. Often they evolve into rimmed platforms.

Inner ramp

The inner ramp comprises the euphotic zone between the upper shoreface (beach or lagoonal shoreline) and the fair-weather wave base. The sea floor is almost constantly affected by wave action. The zone is dominated by sand shoals or organic barriers and shoreface deposits. The shallow inner ramp may consist of (1) a beach barrier-tidal delta complex with lagoons and tidal flats behind (backramp), or (2) fringing sand banks and shoal complexes with intertidal and supratidal flats, but no lagoons behind, or (3) a strandplain of linear beach ridges with depressions.

Characteristic sediments are carbonate lime sand bodies formed in agitated, shallow subtidal shoreface areas above the fair-weather wave base. The sands consist predominantly of ooids or various skeletal grains, usually foraminifera, calcareous algae, or mollusks. Peloids may be common in places. Storms contribute to the formation of extended sheet-like sand bodies and sand beaches that may grade into eolian dunes. Offshore storm surges transport shoreface sands to deeper, outer ramp settings. Organic buildups in inner-ramp environments are biostromes and small patch reefs characterized by low-diversity biota (e.g. corals, rudists, oysters). Frequent limestone types are grainstones and packstones.

Back-ramp sediments originate in peritidal settings similar to those of inner platforms (comprising mudstones, bindstones and wackestones), and in restricted lagoonal areas (mudstones, wackestones, packstones).

Mid-ramp

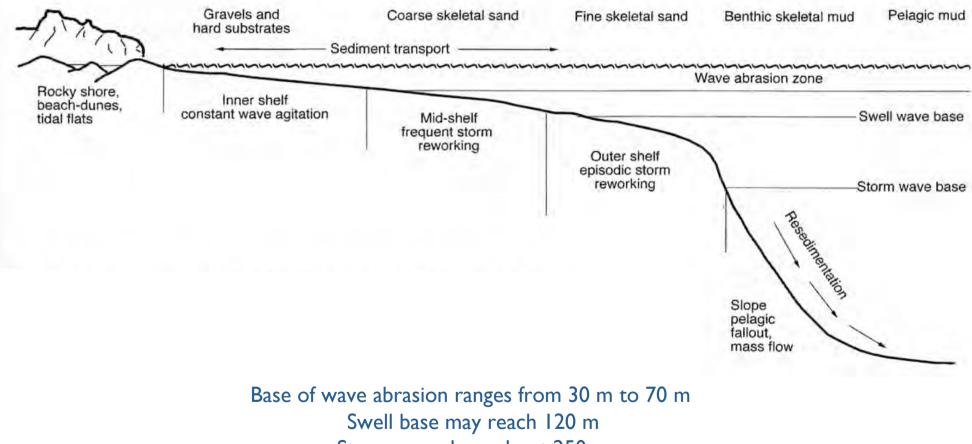
The mid-ramp is the zone between fair-weather wave base and the storm wave base. Water depths reach some tens of meters. The bottom sediment is frequently reworked by storm waves and swells. The sediments reflect varying degrees of storm influence depending on the water depth A. PREAT U. Br and bottom relief. Intraclast and breccia beds may be comThick oolitic and bioclastic sand shoals are common. Storm-related features are graded packstone, grainstone beds, hummocky cross-stratification, and tempestite couplets. Skeletal grains exhibit signs of transport.

Fair-weather phases are represented by burrowed sediments dominated by lime mud or terrigenous mud forming lime mudstones and marls. Much of the fine-grained sediment might be caused by lateral sediment transport in offshore zones or by transport from the shoreline to midand outer ramp areas. Mid-ramp deposits are often thicker than coeval inner ramp deposits. Organic buildups are represented by pinnacle reefs and mounds.

Outer ramp

The outer ramp is the zone below normal storm wave base. Water depths vary between tens of meters and several hundreds of meters. The zone is characterized by lowenergy allochthonous and autochthonous carbonates, and hemipelagic sedimentation. Little evidence of direct storm reworking exists, but various storm-related deposits (e.g. graded distal tempestite beds) may occur. Common lithofacies types are bedded, fine-grained limestones (argillaceous lime mudstone and wackestone) associated and interbedded with marl or shale beds. Calcisiltite matrix is abundant. Biota comprise normal marine diverse benthos, sometimes associated with plankton and nekton. Benthic organisms include foraminifera, sponges, bryozoans, brachiopods, mollusks, and echinoderms. Algae may be represented by red algae. Burrows are common. In deeper outer ramp settings restricted bottom conditions may develop. Common organic buildups are mud mounds.

The *slope break of distally steepened ramps* is usually located in a position around the mid- or outer ramp boundary or within the outer ramp. Deposition of slope-derived material may dominate proximal to the break.


THE CARBONATE RAMP MODEL – AHR1973

	COAST Peritida zone, sabkha	al	NER RAMP Sand shoal	MID-RAMP	OUTER RAMP	BASIN Mean sea level
	Algal mats,	Fine-		Mud mound		Fair-weather wave base
	evaporites	grained sediment	Accumulation of bioclasts or ooids Resedi-	1	Mud mound	Storm wave base
			mentation	Coarse-grained, graded storm layers intercalated in fine- grained sediments	Fine-grained, resedimented, graded storm layers, intercalated in fine-grained sediments	Pycno-/Thermocline Fine-grained sediments
Depositional water energy	Low and high	Low	High Low	Low and high	Low	Low
Sedimentary structures	Lamination	Irregular bedding, bioturbation	Cross-bedding	Hummocky cross-stratification	Bioturbation, lamination	Lamination
Prevailing carbonate texture in limestones	Mudstones, bindstones, grainstones	Wacke- stones, mudstones	Grain- Wacke- stones stones, packstones	Wackestones and mudstones	d resedimented grain/packstones,	Mudstones, bindstones, grainstones

Generalized subdivisions of carbonate ramps (in Flügel 2004)

Widths and lengths of ancient carbonate ramps vary within a wide range Max. width <10km to 800km (most values <200km, generally <10 to ±20km) Lengths: 10-1600km (if behind 1000km = '**epeiric** ramp'). Most values <500km (10-200km)

NON-RIMMED SHELVES AND PLATFORMS – JAMES 1997 cool-water (temperate) shelf

Storm wave base about 250 m

NON-RIMMED SHELVES AND PLATFORMS – JAMES 1997 cool-water (temperate) shelf

Criteria used in the subdivision of a non-rimmed carbonate cool-water shelf

Inner shelf

Depositional processes: Constant wave agitation. Particle abrasion and bioerosion. Winnowing.

Sediment: Zone of sediment movement and active sediment production. Gravels, lithoclastic sands and hard substrates. Subaqueous dunes. Shaved shelf areas.

Biota: Coralline red algae, benthic foraminifera, bryozoans, sponges, bivalves, gastropods, serpulids, echinoids. Deposition of epibionts from high-energy kelp forests and low-energy sea grass.

Mid-shelf

Depositional processes: Frequent storm reworking. Particle abrasion. Sediment transport to outer and inner shelf areas results in sediment-free areas. Bioerosion and burrowing common.

Sediment: Zone of active sediment production. Thin

sediment veneer over lithified bedrock. Coarse bioclastic sand. Rippled sands, subaqueous dunes.

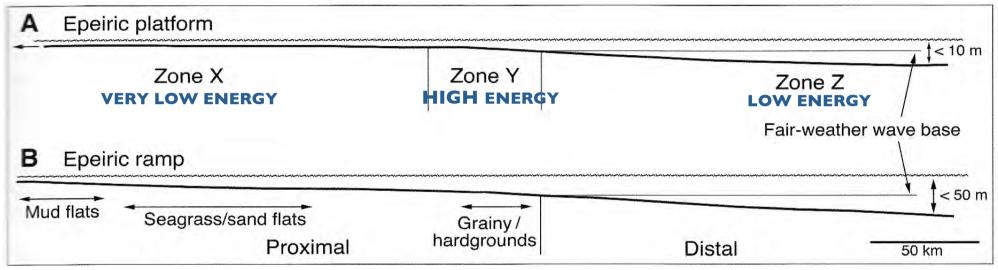
Biota: Coralline red algae, mollusks, benthic and planktonic foraminifera, bryozoans, brachiopods, sponges, barnacles, echinoids.

Outer shelf

Depositional processes: Sea bottom reworked by episodic storms. Suspension settling. Bioerosion and burrowing common.

Sediment: Zone of carbonate production and accumulation. Fine bioclastic sands. In deeper parts mud (consisting of a mixture of calcitic plankton and skeletal fragments, siliceous sponge spicules, and clay). Burrowed sediments and storm beds.

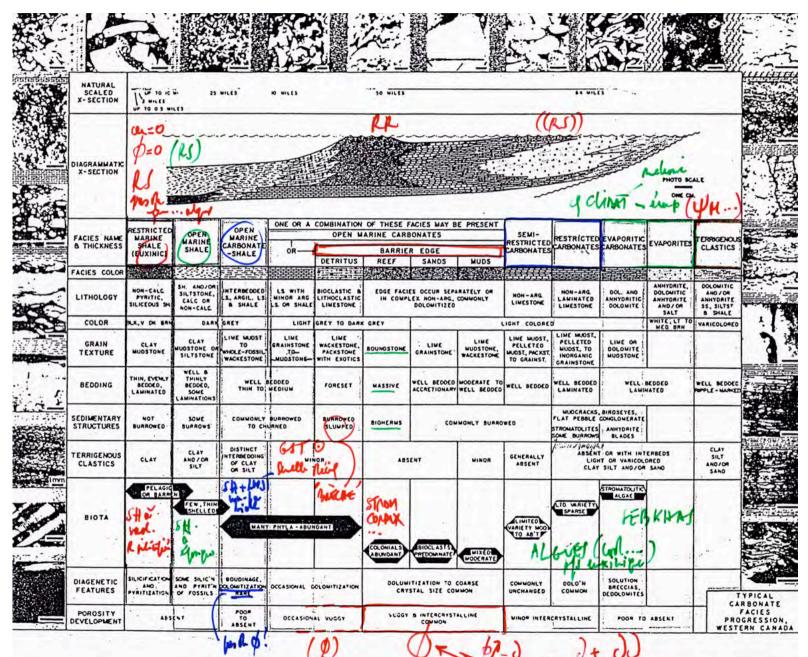
Biota: Bryozoans, sponges, mollusks, brachiopods, benthic and planktonic foraminifera.


EPEIRIC PLATFORM MODEL – IRWIN 1965

During the Phanerozoic epeiric seas covered **extensive** areas of the cratons

 \Rightarrow very shallow, low-energy seas extended for 100' to 1000' km.

Epeiric seas first flooded the margins and later the interior of tectonically stable cratons.


Modern epeiric seas are rare. Examples of warm-water epeiric seas are the Sunda Sea and the Java Sea, cool-water examples are the Baltic Sea, the North Sea and the Hudson Bay.

A. Irwin model B. Lukasik et al 2000 model differing in the nature of the slope and the extent of the basin. nb : Lukasik et al model is from temperate TERTIARY carbonates from the Murray Basin in Australia.

Characteristics : clear-water sedimentation, extremely low slope angle and regionally extended low-energy conditions and distinct salinity gradient. The inner platform consists of subtidal to intertidal mudflats with widths of tens of 100km, and water depths generally < 10m.

THE ESSO MODEL – FRASNIAN/FAMENNIAN, W CANADA

