Full-time professor at the Free University of Brussels, Belgium
apreat@gmail.com
apreat@ulb.ac.be
• Department of Earth Sciences and Environment
Res. Grp. - Biogeochemistry & Modeling of the Earth System
Sedimentology & Basin Analysis
• Alumnus, Collège des Alumni, Académie Royale de Sciences, des Lettres et des Beaux Arts de Belgique (mars 2013). http://www.academieroyale.be/cgi?usr=2a8crwkksq&lg=fr&pag=858&rec=0&frm=0&par=aybabtu&id=4471&flux=8365323
• Prof. Invited, Université de Mons-Hainaut (2010-present-day)
• Prof. Coordinator and invited to the Royal Academy of Sciences of Belgium (Belgian College) (2009-
present day)
• Prof. partim to the DEA (third cycle) led by the University of Lille (9 universities from 1999 to 2004) - Prof. partim at the University of Paris-Sud/Orsay, European-Socrates Agreement (1995-1998)
• Prof. partim at the University of Louvain, Convention ULB-UCL (1993-2000)
• Since 2015 : Member of Comité éditorial de la Revue Géologie de la France http://geolfrance.brgm.fr
• Since 2014 : Regular author of texts for ‘la Revue Science et Pseudosciences’ http://www.pseudo-sciences.org/
• Many field works (several weeks to 2 months) (Meso- and Paleozoic carbonates, Paleo- to Neoproterozoic carbonates) in Europe, USA (Nevada), Papouasia (Holocene), North Africa (Algeria, Morrocco, Tunisia), West Africa (Gabon, DRC, Congo-Brazzaville, South Africa, Angola), Iraq... Recently : field works (3 to 5 weeks) Congo- Brazzaville 2012, 2015, 2016 (carbonate Neoproterozoic).
Degree in geological sciences at the Free University of Brussels (ULB) in 1974, I went to Algeria for two years teaching mining geology at the University of Constantine. Back in Belgium I worked for two years as an expert for the EEC (European Commission), first on the prospecting of Pb and Zn in carbonate environments, then the uranium exploration in Belgium. Then Assistant at ULB, Department of Geology I got the degree of Doctor of Sciences (Geology) in 1985. My thesis, devoted to the study of the Devonian carbonate sedimentology of northern France and southern Belgium, comprised a significant portion of field work whose interpretation and synthesis conducted to the establishment of model of carbonate platforms and ramps with reefal constructions.
I then worked for Petrofina SA and shared a little more than two years in Angola as Director of the Research Laboratory of this oil company. The lab included 22 people (micropaleontology, sedimentology, petrophysics). My main activity was to interpret facies reservoirs from drillings in the Cretaceous, sometimes in the Tertiary. I carried out many studies for oil companies operating in this country.
I returned to the ULB in 1988 as First Assistant and was appointed Professor in 1990. I carried out various missions for mining companies in Belgium and oil companies abroad and continued research, particularly through projects of the Scientific Research National Funds (FNRS).
My research still concerns sedimentology, geochemistry and diagenesis of carbonate rocks which leads me to travel many countries in Europe or outside Europe, North Africa, Papua New Guinea and the USA, to conduct field missions.
Since the late 90's, I expanded my field of research in addressing the problem of mass extinctions of organisms from the Upper Devonian series across Euramerica (from North America to Poland) and I also specialized in microbiological and geochemical analyses of ancient carbonate series developing a sustained collaboration with biologists of my university. We are at the origin of a paleoecological model based on the presence of iron-bacterial microfossils, which led me to travel many countries in Europe and North Africa. This model accounts for the red pigmentation of many marble and ornamental stones used in the world. This research also has implications on the emergence of Life from the earliest stages of formation of Earth, as well as in the field of exobiology or extraterrestrial life ...
More recently I invested in the study from the Precambrian series of Gabon and Congo. These works with colleagues from BRGM (Orléans) are as much about the academic side (consequences of the appearance of oxygen in the Paleoproterozoic and study of Neoproterozoic glaciations) that the potential applications in reservoir rocks and source rocks of oil (in collaboration with oil companies).
Finally I recently established a close collaboration with the Royal Institute of Natural Sciences of Belgium to study the susceptibility magnetic signal from various European Paleozoic series. All these works allowed me to gain a thorough understanding of carbonate rocks (petrology, micropaleontology, geobiology, geochemistry, sequence stratigraphy, diagenesis) as well in Precambrian (2.2 Ga and 0.6 Ga), Paleozoic (from Silurian to Carboniferous) and Mesozoic (Jurassic and Cretaceous) rocks. Recently (2010) I have established a collaboration with Iraqi Kurdistan as part of a government program to boost scientific research in this country.
My research led me to publish about 180 papers in international and national journals and presented more than 170 conference papers. I am a holder of eight courses at the ULB (5 mandatory and 3 optional), excursions and field stages, I taught at the third cycle in several French universities and led or co-managed a score of 20 Doctoral (PhD) and Post-doctoral theses and has been the promotor of more than 50 Masters theses.
Stony corals may be more resilient to ocean acidification than once thought, according to a Rutgers University study that shows they rely on proteins to help create their rock-hard skeletons.
“The bottom line is that corals will make rock even under adverse conditions,” said Paul G. Falkowski, a distinguished professor who leads the Environmental Biophysics and Molecular Ecology Laboratory at Rutgers University-New Brunswick. “They will probably make rock even as the ocean becomes slightly acidic from the burning of fossil fuels.”
The Marcott, et al. 2013 worldwide reconstruction has its problems, but many of the proxies used in the reconstruction are quite good and very usable.
The Antarctic reconstruction created here is comparable to previous temperature reconstructions, especially those focusing on eastern Antarctica. It shows two climatic optima, one from 11500 BP to 9000 BP and another from 6000 BP to 3000 BP. In eastern Antarctica, using our proxies, the later optimum is warmer. But, in other areas the earlier optimum is warmer, however, the difference is small
In the western United States 160,000 abandoned mines contaminate soils in the region. Researchers hope to solve this problem with biochar, a charcoal-like substance that can reduce the toxic consequences of mining for metals.
If you’re in the energy business, here is a new manual for you that lays out the essentials of what energy is and how it shapes geopolitics today. Professor and long-time European Commission official Samuele Furfari has condensed his 39 years of experience in the energy sector into a two-volume tome of more than 1,250 pages that goes right from the fundamentals of physics through Britain’s rule of the Middle East to modern day realities such as “Rosatom, the undisputed nuclear leader”, “Biofuels, a subsidised reality”, smart cities and the latest gas discoveries in the Eastern Mediterranean. Energy Post spoke with the author about his new book.
It has long been established in the peer-reviewed scientific literature that naturally-driven fluctuations in the Earth’s surface temperature preceded the rise and fall of carbon dioxide (CO2) concentrations for at least the last 800,000 years.
The sun has looked remarkably blank lately, with few dark cores interrupting the featureless solar disk. This is a sign that Solar Minimum is coming. Indeed, sunspot counts have just reached their lowest level since 2011.
by Phil J. Watson, Journal of Coastal research, May 2017
Key findings are that at the 95% confidence level, no consistent or compelling evidence (yet) exists that recent rates of rise are higher or abnormal in the context of the historical records available across Europe, nor is there any evidence that geocentric rates of rise are above the global average. It is likely a further 20 years of data will distinguish whether recent increases are evidence of the onset of climate change–induced acceleration.
The many dimensions of the climate uncertainty monster.
Bret Stephens’ climate change op-ed of several weeks ago Climate of Complete Certainty spawned a number of articles related to uncertainty and climate change.
Today marks the 6th day in a row that the sun is blank and the 36th time this year – already more spotless days than all of 2016. In what has turned out to be a historically weak solar cycle (#24), the sun continues to transition away from its solar maximum phase and towards the next solar minimum.
The eminent scientist Stephen Koonin has stated that, ‘Today’s best estimate of the sensitivity [of the atmosphere to the addition of carbon dioxide]… is no different, and no more certain, than it was 30 years ago. And this is despite an heroic research effort costing billions of dollars.’
Arctic amplification is a robust feature of climate response to global warming, with large impacts on ecosystems and societies. A long-standing mystery is that a pronounced Arctic warming occurred during the early 20th century when the rate of interdecadal change in radiative forcing was much weaker than at present. Here, using observations and model experiments, we show that the combined effect of internally generated Pacific and Atlantic interdecadal variabilities intensified the Arctic land warming in the early 20th century.
Just within the last 5 months, 58 more papers and 80 new graphs have been published that continue to undermine the popularized conception of a slowly cooling Earth temperature history followed by a dramatic hockey-stick-shaped uptick, or an especially unusual global-scale warming during modern times.
A new global assessment reveals that increases in leaf abundance are causing boreal areas to warm and arid regions to cool. The results suggest that recent changes in global vegetation have had impacts on local climates that should be considered in the design of local mitigation and adaptation plans.
The relative influences of tectonics, continental weathering and seafloor weathering in controlling the geological carbon cycle are unknown. Here we develop a new carbon cycle model that explicitly captures the kinetics of seafloor weathering to investigate carbon fluxes and the evolution of atmospheric CO2 and ocean pH since 100 Myr ago.
The fuel-hungry country has been pursuing the energy source, located at the bottom of oceans and in polar regions, for nearly two decades. China’s minister of land and resources, Jiang Daming, said Thursday that the successful collection of the frozen fuel was “a major breakthrough that may lead to a global energy revolution,” according to state media.
Experts agree that flammable ice could be a game changer for the energy industry, similar to the U.S. shale boom. But they caution that big barriers — both technological and environmental — need to be cleared to build an industry around the frozen fuel, which is also known as gas hydrate.
Water reservoirs created by damming rivers could have significant impacts on the world’s carbon cycle and climate system that aren’t being accounted for, a new study concludes.
The study, conducted by researchers at the University of Waterloo and the Université libre de Bruxelles, appears in Nature Communications. It found that man-made dam reservoirs trap nearly one-fifth of the organic carbon moving from land to ocean via the world’s rivers.
The United States has a broader array of energy options than China does. However, China is innovating and investing heavily in what it has, and some of the transformations it is achieving already are truly impressive.
China’s leaders have made a strategic choice about the direction of the country: They are aiming to shift from an economy based on heavy, polluting industries to one driven by technology and innovation. The political will for this upgrade has roots in both international geostrategic ambitions and domestic popular grievances about lagging standards of living—and it is beginning to bear fruit. In the process, however, vested interests and technical stumbling blocks have wasted resources and acted as a ballast against Chinese progress. China has the potential to do much more, and the international community should push it to achieve that potential.
In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka.
Chronicling Earth’s past temperature swings is a basic part of understanding climate change. One of the best records of past ocean temperatures can be found in the shells of marine creatures called foraminifera
239 people were required to examine over 210,000 0.5 hectare (1.2 acre) sample plots in GoogleEarth, and classify the cover as open or forested. Thing of being condemned to looking at that many satellite views of real estate. Anyway, Here’s the resultant cool map…
Good news about climate change is especially rare in the Arctic. But now comes news that increases in one greenhouse gas—methane—lead to the dramatic decline of another. Research off the coast of Norway’s Svalbard archipelago suggests that where methane gas bubbles up from seafloor seeps, surface waters directly above absorb twice as much carbon dioxide (CO2) as surrounding waters. The findings suggest that methane seeps in isolated spots in the Arctic could lessen the impact of climate change.
Here we review proxy records of intermediate water temperatures from sediment cores in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record.
These records suggests that intermediate waters were 1.5–2 °C warmer during the Holocene Thermal Maximum than in the last century.
Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age.
The core of Salby’s theory is derived using CO2 data from MLO’s Keeling Curve since 1958, and satellite temperature data since 1979. (His few charts reaching back to 1880 contain acknowledged large uncertainties.) His theory builds off a simple observation, that in ‘official’ estimates of Earth’s carbon cycle budget, anthropogenic CO2 is only a small source compared to large natural sources and sinks.
La géologie, une science plus que passionnante … et diverse