Archives par mot-clé : Geology

New geological study proves that the green energy movement is impossible to achieve

by R.A. Bishop, Feb 17, 2023 in LifeSite.AmericanThinker


The comprehensive study found that the current estimated metal reserves are woefully deficient in almost every category.  The table below lists base and rare earth metals requirements to build the new grid and E.V.s.  Deficits are yellow-highlighted.  For example, copper is an integral part of a high-voltage grid system, coming up short by a shocking 3.7 billion tons.  Can we dig enough open mile-deep ore pits to meet that shortfall?  Improbable.

Table 1 Below is the study’s table estimating the years to produce the required metals at the current production rates.  For example, lithium would take almost 10 millennia to achieve.  In addition, these scarce minerals must be mined, transported, and processed, relying exclusively on fossil fuels, which would create more carbon emissions and deplete hydrocarbon reserves.

Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism

by Jones et al., Jan 2023 in NatureGeoscience


Abtsract

Large-igneous-province volcanic activity during the mid-Cretaceous triggered a global-scale episode of reduced marine oxygen levels known as Oceanic Anoxic Event 2 approximately 94.5 million years ago. It has been hypothesized that this geologically rapid degassing of volcanic carbon dioxide altered seawater carbonate chemistry, affecting marine ecosystems, geochemical cycles and sedimentation. Here we report on two sites drilled by the International Ocean Discovery Program offshore of southwest Australia that exhibit clear evidence for suppressed pelagic carbonate sedimentation in the form of a stratigraphic interval barren of carbonate minerals, recording ocean acidification during the event. We then use the osmium isotopic composition of bulk sediments to directly link this protracted ~600 kyr shoaling of the marine calcite compensation depth to the onset of volcanic activity. This decrease in marine pH was prolonged by biogeochemical feedbacks in highly productive regions where elevated heterotrophic respiration added carbon dioxide to the water column. A compilation of mid-Cretaceous marine stratigraphic records reveals a contemporaneous decrease of sedimentary carbonate content at continental slope sites globally. Thus, we contend that changes in marine carbonate chemistry are a primary ecological stress and important consequence of rapid emission of carbon dioxide during many large-igneous-province eruptions in the geologic past.

Successive climate crises in the deep past drove the early evolution and radiation of reptiles

by T. Simoes et al., Aug 19, 2022 in ScienceAdvance


Abstract

Climate change–induced mass extinctions provide unique opportunities to explore the impacts of global environmental disturbances on organismal evolution. However, their influence on terrestrial ecosystems remains poorly understood. Here, we provide a new time tree for the early evolution of reptiles and their closest relatives to reconstruct how the Permian-Triassic climatic crises shaped their long-term evolutionary trajectory. By combining rates of phenotypic evolution, mode of selection, body size, and global temperature data, we reveal an intimate association between reptile evolutionary dynamics and climate change in the deep past. We show that the origin and phenotypic radiation of reptiles was not solely driven by ecological opportunity following the end-Permian extinction as previously thought but also the result of multiple adaptive responses to climatic shifts spanning 57 million years.

The inter-glacial cycle is not a 100,000-year cycle, it is a shorter cycle with missing beats

by M.O. Jonas, 2022, WorldJ.Adv.ResReviews


Review Article
World Journal of Advanced Research and Reviews, 2022, 13(03), 388–392
Article DOI: 10.30574/wjarr.2022.13.3.0259
Publication history:
Received on 18 February 2022; revised on 20 March 2022; accepted on 22 March 2022
Abstract:
The “100,000-year problem” refers to an apparent unexplained change in the frequency of inter-glacial periods which occurred about a million years ago. Before that, inter-glacial periods seemed to occur about every 41,000 years, in line with the obliquity Milankovich cycle. But after that, they seemed to occur about every 100,000 years, in line with the orbital inclination Milankovich cycle. Examination of the data shows that there never was a 41,000-year cycle, and that there is no 100,000-year cycle, but that the most influential cycle is the approx 21,000-year precession cycle which is the major factor in the cycles of insolation at higher latitudes. Insolation at 65N is generally regarded as the most significant of these. Inspection of the data shows that every glacial termination (start of an inter-glacial period) began at a time when insolation at 65N increased from a low point in its cycle. That not every such cycle triggered a new inter-glacial period underlines the chaotic non-linear nature of Earth’s climate. Until about a million years ago, this cycle occasionally “missed a beat”, making the inter-glacial frequency average about 41,000 years. After that, the cycle started missing more “beats”, making the inter-glacial frequency average about 100,000 years. There never was an actual 41,000-year or 100,000-year inter-glacial cycle.
Keywords:
Climate; Glacial Termination; Inter-Glacial; Milankovich Cycle; Non-Linear; Precession
Full text article in PDF:

AR6 and The Paleocene-Eocene Thermal Maximum

by Andy May, Aug 18, 2021 in WUWT


The PETM or Paleocene-Eocene Thermal Maximum was a warm period that began between 56.3 and 55.9 Ma (million years ago). The IPCC AR6 report (actually a draft, not a final edited report), released to the public on August 9, 2021, suggests that this warm period is similar to what is happening today and they expect to happen in the future (IPCC, 2021, pp. 2-82 & 5-14). During the PETM, it was very warm and average global surface temperatures probably peaked between 25.5°C and 26°C briefly, compared to a global surface temperature average of about 14.5°C today, as shown in Figure 1.

….

 

oday we have tens of thousands of daily temperature measurements around the world and can calculate a fairly accurate global average surface temperature. To construct a global average for the PETM we must rely on proxy temperatures, such as oxygen isotope ratios, Calcium/Magnesium ratios in fossil shells, and fossil membrane lipids that are sensitive to temperature like Tex86. Proxy temperature values are sparsely located and have a temporal resolution, 56 Ma, of thousands to hundreds of thousands of years. Thus, in terms of rate of temperature change, they are not comparable to today’s monthly global averages.

Before diving into the PETM, we will provide some geological perspective. According to Christopher Scotese, the highest global average temperature in the Phanerozoic (the age of complex shelled organisms, or the past 550 million years) was the Triassic hothouse event, following the end of the Karoo Ice Age, around 250-300 Ma. Global average surface temperatures peaked then at about 27.9°C.

 …

Danes see Greenland security risk amid Arctic tensions

by L. Peter, Nov 2019 in BBCNews


Denmark has for the first time put mineral-rich Greenland top of its national security agenda, ahead of terrorism and cybercrime.

The Defence Intelligence Service (FE) linked its change in priorities to US interest in Greenland, expressed in President Donald Trump’s desire to buy the vast Arctic territory.

Greenland is part of Denmark, but has significant autonomy, including freedom to sign major business deals.

China has mining deals with Greenland.

The FE’s head Lars Findsen said Greenland was now a top security issue for Denmark because a “power game is unfolding” between the US and other global powers in the Arctic.

In August the Danish government dismissed as “absurd” President Trump’s suggestion of a US-Denmark land deal over Greenland.

Mr Trump then cancelled a state visit to Denmark and called Danish Prime Minister Mette Frederiksen “nasty”.

The US interest in Greenland goes back decades. The US has a key Cold War-era air base at Thule, used for surveillance of space using a massive radar. It is the US military’s northernmost base, there to provide early warning of a missile attack on North America.

Why the new focus on Greenland?

Greenland’s strategic importance has grown amid increased Arctic shipping and international competition for rare minerals. Arctic waters are becoming more navigable because of melting ice, linked to global warming.

Hematite reconstruction of Late Triassic hydroclimate over the Colorado Plateau

by Lepre, J & Olsen P.E., Feb 21, 2021 PNAS


Significance

Hematite provides much of the color for the classic Triassic–Jurassic “red beds” of North America and elsewhere. Measuring the spectrum of visible light reflected and absorbed by the red beds, we demonstrate that the hematite concentrations faithfully track 14.5 million years of Late Triassic monsoonal rainfall over the Colorado Plateau of Arizona and use this information to assess interrelationships between environmental perturbations, climate, and the evolution of terrestrial vertebrates. The research challenges conventional ideas that the hematite has limited use for interpreting the ancient past because it is a product of natural chemical alterations that occurred long after the beds were initially deposited.

Abstract

Hematite is the most abundant surficial iron oxide on Earth resulting from near-surface processes that make it important for addressing numerous geologic problems. While red beds have proved to be excellent paleomagnetic recorders, the early diagenetic origin of hematite in these units is often questioned. Here, we validate pigmentary hematite (“pigmentite”) as a proxy indicator for the Late Triassic environment and its penecontemporaneous origin by analyzing spectrophotometric measurements of a 14.5-My–long red bed sequence in scientific drill core CPCP-PFNP13-1A of the Chinle Formation, Arizona. Pigmentite concentrations in the red beds track the evolving pattern of the Late Triassic monsoon and indicate a long-term rise in aridity beginning at ∼215 Ma followed by increased oscillatory climate change at ∼213 Ma. These monsoonal changes are attributed to the northward drift of the Colorado Plateau as part of Laurentia into the arid subtropics during a time of fluctuating CO2. Our results refine the record of the Late Triassic monsoon and indicate significant changes in rainfall proximal to the Adamanian–Revueltian biotic transition that thus may have contributed to apparent faunal and floral events at 216 to 213 Ma.

Scientists Discover Plate Tectonics… Again

by D. Middleton, Feb 5, 2021 in WUWT


An upwelling of rock beneath the Atlantic may drive continents apart
The Mid-Atlantic Ridge may play a more active role in plate tectonics than thought

By Maria Temming

FEBRUARY 4, 2021

An upsurge of hot rock from deep beneath the Atlantic Ocean may be driving the continents on either side apart.

The Americas are moving away from Europe and Africa by a few centimeters each year, as the tectonic plates underlying those continents drift apart. Researchers typically think tectonic plates separate as the distant edges of those plates sink down into Earth’s mantle, creating a gap (SN: 1/13/21). Material from the upper mantle then seeps up through the rift between the plates to fill in the seafloor.

But new seismic data from the Atlantic Ocean floor show that hot rock is welling up beneath a seafloor rift called the Mid-Atlantic Ridge from hundreds of kilometers deep in Earth’s mantle. This suggests that material rising up under the ridge is not just a passive response to tectonic plates sliding apart. Rather, deep rock pushing toward Earth’s surface may be driving a wedge between the plates that helps separate them, researchers report online January 27 in Nature.

A better understanding of plate tectonics — which causes earthquakes and volcanic eruptions — could help people better prepare for these natural disasters (SN: 9/3/17).

The role of megacontinents in the supercontinent cycle

by Wang et al. 2020 in GeolSocAmerica OPEN ACCESS.pdf


ABSTRACT
Supercontinent Pangea was preceded by the formation of Gondwana, a “megacontinent”

about half the size of Pangea. There is much debate, however, over what role the assembly of the precursor megacontinent played in the Pangean supercontinent cycle. Here we dem- onstrate that the past three cycles of supercontinent amalgamation were each preceded by ∼200 m.y. by the assembly of a megacontinent akin to Gondwana, and that the building of a megacontinent is a geodynamically important precursor to supercontinent amalgamation. The recent assembly of Eurasia is considered as a fourth megacontinent associated with future supercontinent Amasia. We use constraints from seismology of the deep mantle for Eurasia and paleogeography for Gondwana to develop a geodynamic model for megacontinent assembly and subsequent supercontinent amalgamation. As a supercontinent breaks up, a megacontinent assembles along the subduction girdle that encircled it, at a specific location where the downwelling is most intense. The megacontinent then migrates along the girdle where it collides with other continents to form a supercontinent. The geometry of this model is consistent with the kinematic transitions from Rodinia to Gondwana to Pangea.

See also  What might Earth’s next supercontinent look like? New study provides clues

Rocks show Mars once felt like Iceland

by Rice University, Jan 21, 2021 in ScienceDaily


Crater study offers window on temperatures 3.5 billion years ago

Once upon a time, seasons in Gale Crater probably felt something like those in Iceland. But nobody was there to bundle up more than 3 billion years ago.

The ancient Martian crater is the focus of a study by Rice University scientists comparing data from the Curiosity rover to places on Earth where similar geologic formations have experienced weathering in different climates.

Iceland’s basaltic terrain and cool weather, with temperatures typically less than 38 degrees Fahrenheit, turned out to be the closest analog to ancient Mars. The study determined that temperature had the biggest impact on how rocks formed from sediment deposited by ancient Martian streams were weathered by climate.

The study by postdoctoral alumnus Michael Thorpe and Martian geologist Kirsten Siebach of Rice and geoscientist Joel Hurowitz of State University of New York at Stony Brook set out to answer questions about the forces that affected sands and mud in the ancient lakebed.

Data collected by Curiosity during its travels since landing on Mars in 2012 provide details about the chemical and physical states of mudstones formed in an ancient lake, but the chemistry does not directly reveal the climate conditions when the sediment eroded upstream. For that, the researchers had to look for similar rocks and soils on Earth to find a correlation between the planets.

Volcanic eruptions directly triggered ocean acidification during Early Cretaceous

by Northwestern University, Dec 21, 2020 in ScienceDaily


Around 120 million years ago, the earth experienced an extreme environmental disruption that choked oxygen from its oceans.

Known as oceanic anoxic event (OAE) 1a, the oxygen-deprived water led to a minor — but significant — mass extinction that affected the entire globe. During this age in the Early Cretaceous Period, an entire family of sea-dwelling nannoplankton virtually disappeared.

By measuring calcium and strontium isotope abundances in nannoplankton fossils, Northwestern earth scientists have concluded the eruption of the Ontong Java Plateau large igneous province (LIP) directly triggered OAE1a. Roughly the size of Alaska, the Ontong Java LIP erupted for seven million years, making it one of the largest known LIP events ever. During this time, it spewed tons of carbon dioxide (CO2) into the atmosphere, pushing Earth into a greenhouse period that acidified seawater and suffocated the oceans.

In Geological Terms, Today’s Atmospheric CO2 Concentrations Are Still Uncomfortably Low

by P. Gosselin, Dec 5, 2020 in NoTricksZone


Under 180 ppm atmospheric CO2 concentration, life on earth begins to die.

The earth came very close to that point not long ago during the Ice Ages (20,000 years ago). Then the planet warmed naturally, and an increase in atmospheric CO2 to over 200 ppm followed (new study here).

The earth saw CO2 levels of close to 8000 ppm in the past, i.e. about 20 times more than today. The following chart shows the earth’s atmospheric CO2 concentrations for the past 600 million years.

Today, thanks in large part to mankind, concentrations have risen to over 400 ppm, yet historically this remains at the very low end of the scale compared to the thousands of ppm seen naturally earlier in history.

Greening planet

Today, definitely a safer level would be near 1000 ppm. Studies unanimously show plant growth at these higher levels is far enhanced. Already today we see clear evidence the planet is greening Zhu et al. (2016), in part due to the fertilizations taking place through human emissions:

Editorial: Deep Carbon Science

by D. Cardace et al., Nov 12, 2020 in Front.Earth.Sci.


Editorial on the Research Topic
Deep Carbon Science

Our understanding of the slow, deep carbon cycle, key to Earth’s habitability is examined here. Because the carbon cycle links Earth’s reservoirs on nano- to mega-scales, we must integrate geological, physical, chemical, biological, and mathematical methods to understand objects and processes so small and yet so vast. Here, we profile current research in the physical chemistry of carbon in natural and model systems, processes ongoing in the deepest portions of planets, and observations of carbon utilization by the deep biosphere. The relationships between the carbon cycle and planetary habitability are undeniable, forming a conceptual anchor to all work in deep carbon science.

Carbon minerals respond to changing pressures, temperatures, and geochemical conditions. The geologic record preserves evidence of transitional periods at the submicroscopic to regional landscape scales, and demonstrates interplay between carbon-bearing phases and the biosphere. In a new review, Morrison et al. (2020) cast a retrospective look through deep time and call for emerging approaches to clarify the coevolution of the biosphere and geosphere.

Critical to transformations of Earth’s carbon inventory over time are indomitable tectonics – which influence Earth’s surface environment, weathering, metamorphism, magmatism, and volcanism. The slow, deep (endogenous) carbon cycle refines and re-distributes carbon within Earth. In fact, over the 200-million-year-long time scale, important tectonic controls on carbon cycling emerge (Wong et al., 2019). Wong et al. (2019) document the spatiotemporal evolution of fluxes inferred from plate tectonic reconstructions, and highlight CO2 fluxes from continental rift settings post-Pangea. The volcanic flux of CO2 has been successfully reconstructed by direct study of CO2 flux through lakes and adjacent soils (Hughes et al., 2019), an important and often overlooked CO2 valve linking lithosphere, atmosphere, and hydrosphere. From perspectives rooted deeper in the tectonic system, the important roles that serpentinites play in the carbon cycle are evaluated in two senses: 1) serpentinite as a carbon vector to the deep mantle (Merdith et al., 2019), and 2) serpentine mud volcanoes as sites of carbon mobilization through organic acid release (Eickenbusch et al., 2019), in a Mariana Trench case study.

Continuer la lecture de Editorial: Deep Carbon Science

East African Rift System is slowly breaking away, with Madagascar splitting into pieces

by Virginia Tech, Nov 13, 2020 in ScienceDaily


The African continent is slowly separating into several large and small tectonic blocks along the diverging East African Rift System, continuing to Madagascar — the long island just off the coast of Southeast Africa — that itself will also break apart into smaller islands.

These developments will redefine Africa and the Indian Ocean. The finding comes in a new study by D. Sarah Stamps of the Department of Geosciences for the journal Geology. The breakup is a continuation of the shattering of the supercontinent Pangea some 200 million years ago.

Rest assured, though, this isn’t happening anytime soon.

“The rate of present-day break-up is millimeters per year, so it will be millions of years before new oceans start to form,” said Stamps, an assistant professor in the Virginia Tech College of Science. “The rate of extension is fastest in the north, so we’ll see new oceans forming there first.”

Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations

by Jurikova, H. et al., Oct 19, 2020 in NatureGeoscience


Abstract

The Permian/Triassic boundary approximately 251.9 million years ago marked the most severe environmental crisis identified in the geological record, which dictated the onwards course for the evolution of life. Magmatism from Siberian Traps is thought to have played an important role, but the causational trigger and its feedbacks are yet to be fully understood. Here we present a new boron-isotope-derived seawater pH record from fossil brachiopod shells deposited on the Tethys shelf that demonstrates a substantial decline in seawater pH coeval with the onset of the mass extinction in the latest Permian. Combined with carbon isotope data, our results are integrated in a geochemical model that resolves the carbon cycle dynamics as well as the ocean redox conditions and nitrogen isotope turnover. We find that the initial ocean acidification was intimately linked to a large pulse of carbon degassing from the Siberian sill intrusions. We unravel the consequences of the greenhouse effect on the marine environment, and show how elevated sea surface temperatures, export production and nutrient input driven by increased rates of chemical weathering gave rise to widespread deoxygenation and sporadic sulfide poisoning of the oceans in the earliest Triassic. Our findings enable us to assemble a consistent biogeochemical reconstruction of the mechanisms that resulted in the largest Phanerozoic mass extinction.

A New Mass Extinction Event Has Been Discovered, And It Triggered The Rise of Dinosaurs

by M. Benton, Sep 25, 2020 in ScienceAlert


Huge volcanic eruptions 233 million years ago pumped carbon dioxide, methane, and water vapour into the atmosphere. This series of violent explosions, on what we now know as the west coast of Canada, led to massive global warming.

Our new research has revealed that this was a planet-changing mass extinction event that killed off many of the dominant tetrapods and heralded the dawn of the dinosaurs.

The best known mass extinction happened at the end of the Cretaceous period, 66 million years ago. This is when dinosaurs, pterosaurs, marine reptiles and ammonites all died out.

This event was caused primarily by the impact of a giant asteroid that blacked out the light of the sun and caused darkness and freezing, followed by other massive perturbations of the oceans and atmosphere.

Geologists and palaeontologists agree on a roster of five such events, of which the end-Cretaceous mass extinction was the last. So our new discovery of a previously unknown mass extinction might seem unexpected.

And yet this event, termed the Carnian Pluvial Episode (CPE), seems to have killed as many species as the giant asteroid did. Ecosystems on land and sea were profoundly changed, as the planet got warmer and drier.

On land, this triggered profound changes in plants and herbivores. In turn, with the decline of the dominant plant-eating tetrapods, such as rhynchosaurs and dicynodonts, the dinosaurs were given their chance.

Curved rock etchings reveal which way dangerous faults ruptured—and how they might again

by P. Voosen, Sep 23, 2020 in AAAS Science


Many of the world’s most dangerous earthquake faults are a silent menace: They have not ruptured in more than a century. To gauge the hazard they pose to buildings and people, geologists cannot rely on the record of recent strikes, captured by seismometers. Instead, they must figure out how the faults behaved in the past by looking for clues in the rocks themselves, including slickenlines, scour marks along the exposed rock face of a fault that can indicate how much it slipped in past earthquakes.

Earthquakes don’t happen all at once. Rather, the slip between rocks begins at one spot on the face of the fault—the hypocenter—and travels along it, like a zipper being unzipped. As the rupture advances, the earthquake waves it generates pile up and intensify, like the siren of an approaching ambulance. Los Angeles lies at the northern terminus of the southern San Andreas fault, Ampuero notes. “If it breaks north, toward LA, that would be pretty bad.”

Life on Earth may have begun in hostile hot springs

by Jack L. Lee, Sep 245, 2020 in Sciencenews


At Bumpass Hell in California’s Lassen Volcanic National Park, the ground is literally boiling, and the aroma of rotten eggs fills the air. Gas bubbles rise through puddles of mud, producing goopy popping sounds. Jets of scorching-hot steam blast from vents in the earth. The fearsome site was named for the cowboy Kendall Bumpass, who in 1865 got too close and stepped through the thin crust. Boiling, acidic water burned his leg so badly that it had to be amputated.

Some scientists contend that life on our planet arose in such seemingly inhospitable conditions. Long before creatures roamed the Earth, hot springs like Bumpass Hell may have promoted chemical reactions that linked together simple molecules in a first step toward complexity. Other scientists, however, place the starting point for Earth’s life underwater, at the deep hydrothermal vents where heated, mineral-rich water billows from cracks in the ocean floor.

As researchers study and debate where and how life on Earth first ignited, their findings offer an important bonus. Understanding the origins of life on this planet could offer hints about where to search for life elsewhere, says Natalie Batalha, an astrophysicist at the University of California, Santa Cruz. “It has very significant implications for the future of space exploration.” Chemist Wenonah Vercoutere agrees. “The rules of physics are the same throughout the whole universe,” says Vercoutere, of NASA’s Ames Research Center in Moffett Field, Calif. “So what is there to say that the rules of biology do not also carry through and are in place and active in the whole universe?”

A global-scale data set of mining areas

by Maus, V. Sep 8, 2020 in ScientificData OPEN ACCESS


Abstract

The area used for mineral extraction is a key indicator for understanding and mitigating the environmental impacts caused by the extractive sector. To date, worldwide data products on mineral extraction do not report the area used by mining activities. In this paper, we contribute to filling this gap by presenting a new data set of mining extents derived by visual interpretation of satellite images. We delineated mining areas within a 10 km buffer from the approximate geographical coordinates of more than six thousand active mining sites across the globe. The result is a global-scale data set consisting of 21,060 polygons that add up to 57,277 km2. The polygons cover all mining above-ground features that could be identified from the satellite images, including open cuts, tailings dams, waste rock dumps, water ponds, and processing infrastructure. The data set is available for download from https://doi.org/10.1594/PANGAEA.910894 and visualization at www.fineprint.global/viewer.

SANGAY VOLCANO ERUPTS TO 40,000 FT (12.2 KM)

by Cap Allon, Sep 21, 2020 in Electroverse


Ecuador’s active Sangay Volcano exploded in dramatic fashion over the weekend, firing volcanic ash high into the atmosphere — the explosion was a number of times stronger than those previously observed during the volcano’s recent uptick.

The ‘high-level’ eruption occurred at 04:20 local time on Sunday, September 20 and generated a dense, dark ash plume, but the ‘biggie’ was sandwiched between numerous other powerful blasts that occurred throughout the weekend:

More crucially though, particulates ejected to around 32,800 ft (10 km) –and into the stratosphere– can have a direct cooling effect across the planet.

Volcanic eruptions are one of the key forcings driving Earth into its next bout of global cooling. Their worldwide uptick (along with a seismic uptick) is tied to low solar activity, coronal holes, a waning magnetosphere, and the influx of Cosmic Rays penetrating silica-rich magma.

A 500-million-year survey of Earth’s climate reveals dire warning for humanity

by P. Voosen, May 22, 2019 in AAAS/Science


When it opens next month, the revamped fossil hall of the Smithsonian Institution’s National Museum of Natural History in Washington, D.C., will be more than a vault of dinosaur bones. It will show how Earth’s climate has shifted over the eons, driving radical changes in life, and how, in the modern age, one form of life—humans—is, in turn, transforming the climate.

To tell that story, Scott Wing and Brian Huber, a paleobotanist and paleontologist, respectively, at the museum, wanted to chart swings in Earth’s average surface temperature over the past 500 million years or so. The two researchers also thought a temperature curve could counter climate contrarians’ claim that global warming is no concern because Earth was much hotter millions of years ago. Wing and Huber wanted to show the reality of ancient temperature extremes—and how rapid shifts between them have led to mass extinctions. Abrupt climate changes, Wing says, “have catastrophic side effects that are really hard to adapt to.”

But actually making the chart was unexpectedly challenging—and triggered a major effortto reconstruct the record. Although far from complete, the research is already showing that some ancient climates were even more extreme than was thought.

Volcanic ash may have a bigger impact on the climate than we thought

by University of Colorado at Boulder, Sep 11, 2020 in ScienceDaily


“They saw some large particles floating around in the atmosphere a month after the eruption,” Zhu said. “It looked like ash.”

She explained that scientists have long known that volcanic eruptions can take a toll on the planet’s climate. These events blast huge amounts of sulfur-rich particles high into Earth’s atmosphere where they can block sunlight from reaching the ground.

Researchers haven’t thought, however, that ash could play much of a role in that cooling effect. These chunks of rocky debris, scientists reasoned, are so heavy that most of them likely fall out of volcanic clouds not long after an eruption.

Zhu’s team wanted to find out why that wasn’t the case with Kelut. Drawing on aircraft and satellite observations of the unfolding disaster, the group discovered that the volcano’s plume seemed to be rife with small and lightweight particles of ash — tiny particles that were likely capable of floating in the air for long periods of time, much like dandelion fluff.

Journal Reference:

  1. Yunqian Zhu, Owen B. Toon, Eric J. Jensen, Charles G. Bardeen, Michael J. Mills, Margaret A. Tolbert, Pengfei Yu, Sarah Woods. Persisting volcanic ash particles impact stratospheric SO2 lifetime and aerosol optical properties. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-18352-5

Meteorite study suggests Earth may have been wet since it formed

by Washington University in St. Louis, Aug 27, 2020 in ScienceDaily


Enstatite chondrite meteorites, once considered ‘dry,’ contain enough water to fill the oceans — and then some

A new study finds that Earth’s water may have come from materials that were present in the inner solar system at the time the planet formed — instead of far-reaching comets or asteroids delivering such water. The findings published Aug. 28 in Science suggest that Earth may have always been wet.

Researchers from the Centre de Recherches Petrographiques et Geochimiques (CRPG, CNRS/Universite de Lorraine) in Nancy, France, including one who is now a postdoctoral fellow at Washington University in St. Louis, determined that a type of meteorite called an enstatite chondrite contains sufficient hydrogen to deliver at least three times the amount of water contained in the Earth’s oceans, and probably much more.

Enstatite chondrites are entirely composed of material from the inner solar system — essentially the same stuff that made up the Earth originally.

“Our discovery shows that the Earth’s building blocks might have significantly contributed to the Earth’s water,” said lead author Laurette Piani, a researcher at CPRG. “Hydrogen-bearing material was present in the inner solar system at the time of the rocky planet formation, even though the temperatures were too high for water to condense.”

Le Précambrien : les bactéries, la tectonique des plaques et l’oxygène

by A. Préat (.pdf), 21 août 2020 in Bull.Séanc.Acad.R.Sci.OutreMer


 Mots-clés. — Écosystèmes microbiens; Isotopes du carbone et du soufre; Oxydoréduction; Oxygène; Océans et atmosphère. 

Résumé. — L’oxygène n’est pas apparu aussi brutalement qu’on le pensait sur notre planète. Malgré un apport en oxygène lié aux cyanobactéries dès l’archéen, ce ne sont pas ces microorganismes qui sont à la base de la première grande «révolution» de l’oxygène qui a eu lieu à la limite archéen/paléoprotérozoïque (il y a deux milliards et demi d’années) dans l’atmosphère, lors du Grand Événement d’Oxydation. Ce sont les processus liés au cycle de la tectonique des plaques (activité mantellique et périodes intenses d’érosion/altération) qui ont contribué de manière déterminante à l’augmentation de la concentration de l’oxygène atmosphérique voici deux milliards et demi d’années. Les deux principaux processus responsables de cette augmentation sont liés à l’enfouissement de la matière organique et de la pyrite. L’altération des séries riches de ces deux composants conditionnera ensuite pendant près d’un milliard d’années la composition chimique des océans en oxygène, soufre et fer. Au cours du temps, l’oxygène proviendra de l’activité des cyanobactéries et l’atmosphère réductrice du début de l’archéen sera remplacée par une atmosphère oxydante à la fin du précambrien. 

Keywords. — Microbial Ecosystems; Carbon and Sulfur Isotopes; Oxidation Reduction; Oxygen; Oceans and Atmosphere. 

Summary. — The Precambrian: Bacteria, Plate Tectonics and Oxygen. — Oxygen did not appear as abruptly as we thought on our planet. Despite an oxygen supply related to cyanobacteria since the Archean, these microorganisms are not at the origin of the first great oxygen revolution that took place at the Archean/Paleoproterozoic boundary (two and a half billion years) in the atmosphere during the Great Oxidation Event. Two processes related to the cycle of plate tectonics (mantle activity and intense periods of erosion/weathering) were mostly involved in the increase of the atmospheric oxygen concentration two and a half billion years ago. These two main processes are related to the burial of organic matter and pyrite. The alteration of series with high contents of these two elements will then condition for nearly one billion years the oxygen, sulfur and iron chemical composition of the oceans. Oxygen will finally come from the activity of cyanobacteria and the early Archean reducing atmosphere will be replaced by an oxidizing atmosphere at the end of the Precambrian. 

Fig. 3. — Évolution des compositions chimiques et des organismes des océans en trois phases majeures. À l’archéen, les océans contiennent peu d’oxygène et sont relativement riches en fer (colonne de gauche), alors que dans les océans modernes (colonne de droite) l’oxygène est abondant et le fer en quantité limitée. Entre ces deux phases, un long intervalle d’un peu plus d’un milliard d’années est caractérisé par des océans avec des concentrations modérées d’oxygène en surface et des eaux plus profondes riches en H2S en présence de quantités limitées de fer, de molybdène et d’autres éléments en traces importants dans les cycles biologiques. La colonne centrale représente l’«Océan de Canfield» et caractérise le Boring Billion. L’H2S produit (suite à la présence des sulfates, cf. texte) réagit avec le fer ferreux pour former la pyrite. Le fer ferreux n’est donc pas consommé par l’oxygène durant cet intervalle de temps, mais par l’H2S. L’Événement Lomagundi-Jatuli a lieu à environ 2,1 Ga dans le GOE (Great Oxidation Event), marqué par une très forte production d’oxygène. Le début du GOE est marqué par l’oxydation de la pyrite sur les cratons et la disparition des minéraux détritiques sensibles aux conditions d’oxydoréduction des éléments chalcophiles ou sidérophiles (uraninite, sidérite, pyrite, molybdénite, etc.). Les deux grands épisodes «Terre Boule de Neige» à 2,3 Ga («Glaciation Makganyena») et 0,635 («Glaciation Marinoenne»), et d’autres événements glaciaires moins importants ne sont pas reportés ni discutés dans le texte (modifié d’après Knoll 2003).