Tous les articles par Alain Préat

Full-time professor at the Free University of Brussels, Belgium apreat@gmail.com apreat@ulb.ac.be • Department of Earth Sciences and Environment Res. Grp. - Biogeochemistry & Modeling of the Earth System Sedimentology & Basin Analysis • Alumnus, Collège des Alumni, Académie Royale de Sciences, des Lettres et des Beaux Arts de Belgique (mars 2013). http://www.academieroyale.be/cgi?usr=2a8crwkksq&lg=fr&pag=858&rec=0&frm=0&par=aybabtu&id=4471&flux=8365323 • Prof. Invited, Université de Mons-Hainaut (2010-present-day) • Prof. Coordinator and invited to the Royal Academy of Sciences of Belgium (Belgian College) (2009- present day) • Prof. partim to the DEA (third cycle) led by the University of Lille (9 universities from 1999 to 2004) - Prof. partim at the University of Paris-Sud/Orsay, European-Socrates Agreement (1995-1998) • Prof. partim at the University of Louvain, Convention ULB-UCL (1993-2000) • Since 2015 : Member of Comité éditorial de la Revue Géologie de la France http://geolfrance.brgm.fr • Since 2014 : Regular author of texts for ‘la Revue Science et Pseudosciences’ http://www.pseudo-sciences.org/ • Many field works (several weeks to 2 months) (Meso- and Paleozoic carbonates, Paleo- to Neoproterozoic carbonates) in Europe, USA (Nevada), Papouasia (Holocene), North Africa (Algeria, Morrocco, Tunisia), West Africa (Gabon, DRC, Congo-Brazzaville, South Africa, Angola), Iraq... Recently : field works (3 to 5 weeks) Congo- Brazzaville 2012, 2015, 2016 (carbonate Neoproterozoic). Degree in geological sciences at the Free University of Brussels (ULB) in 1974, I went to Algeria for two years teaching mining geology at the University of Constantine. Back in Belgium I worked for two years as an expert for the EEC (European Commission), first on the prospecting of Pb and Zn in carbonate environments, then the uranium exploration in Belgium. Then Assistant at ULB, Department of Geology I got the degree of Doctor of Sciences (Geology) in 1985. My thesis, devoted to the study of the Devonian carbonate sedimentology of northern France and southern Belgium, comprised a significant portion of field work whose interpretation and synthesis conducted to the establishment of model of carbonate platforms and ramps with reefal constructions. I then worked for Petrofina SA and shared a little more than two years in Angola as Director of the Research Laboratory of this oil company. The lab included 22 people (micropaleontology, sedimentology, petrophysics). My main activity was to interpret facies reservoirs from drillings in the Cretaceous, sometimes in the Tertiary. I carried out many studies for oil companies operating in this country. I returned to the ULB in 1988 as First Assistant and was appointed Professor in 1990. I carried out various missions for mining companies in Belgium and oil companies abroad and continued research, particularly through projects of the Scientific Research National Funds (FNRS). My research still concerns sedimentology, geochemistry and diagenesis of carbonate rocks which leads me to travel many countries in Europe or outside Europe, North Africa, Papua New Guinea and the USA, to conduct field missions. Since the late 90's, I expanded my field of research in addressing the problem of mass extinctions of organisms from the Upper Devonian series across Euramerica (from North America to Poland) and I also specialized in microbiological and geochemical analyses of ancient carbonate series developing a sustained collaboration with biologists of my university. We are at the origin of a paleoecological model based on the presence of iron-bacterial microfossils, which led me to travel many countries in Europe and North Africa. This model accounts for the red pigmentation of many marble and ornamental stones used in the world. This research also has implications on the emergence of Life from the earliest stages of formation of Earth, as well as in the field of exobiology or extraterrestrial life ... More recently I invested in the study from the Precambrian series of Gabon and Congo. These works with colleagues from BRGM (Orléans) are as much about the academic side (consequences of the appearance of oxygen in the Paleoproterozoic and study of Neoproterozoic glaciations) that the potential applications in reservoir rocks and source rocks of oil (in collaboration with oil companies). Finally I recently established a close collaboration with the Royal Institute of Natural Sciences of Belgium to study the susceptibility magnetic signal from various European Paleozoic series. All these works allowed me to gain a thorough understanding of carbonate rocks (petrology, micropaleontology, geobiology, geochemistry, sequence stratigraphy, diagenesis) as well in Precambrian (2.2 Ga and 0.6 Ga), Paleozoic (from Silurian to Carboniferous) and Mesozoic (Jurassic and Cretaceous) rocks. Recently (2010) I have established a collaboration with Iraqi Kurdistan as part of a government program to boost scientific research in this country. My research led me to publish about 180 papers in international and national journals and presented more than 170 conference papers. I am a holder of eight courses at the ULB (5 mandatory and 3 optional), excursions and field stages, I taught at the third cycle in several French universities and led or co-managed a score of 20 Doctoral (PhD) and Post-doctoral theses and has been the promotor of more than 50 Masters theses.

Shelf sediments reveal climate shifts through the eons

by University of Queensland, May 10, 2017, in DailyScience


Ms Korpanty said global climate underwent significant change about 14 million years ago when the Antarctic ice sheet expanded.

“The new study presents shallow-marine sediment records from the Australian continental shelf, providing the first empirical evidence linking high-altitude cooling around Antarctica to climate change in the subtropics during the Miocene era,” she said.

Earth’s forests just grew 9% in a new satellite survey

by J.F. Bastin et al., May 11, 2017 in ScienceDaily

in Science May 11, 2017

The Age of Exploration may be long past, but even in the 21st century, our maps can still get a major update. Using satellite imagery, a new study has found hidden forests all over the world—almost enough for a second Amazon—in areas with little moisture known as drylands.

 


A new estimate of dryland forests suggests that the global forest cover is at least 9 percent higher than previously thought. The finding will help reduce uncertainties surrounding terrestrial carbon sink estimates.

See also L‘équipe d’un chercheur belge découvre 467 millions d’hectares de forêt passés sous les radars

Dr. Fred Singer on ‘Global Warming Surprises’

by Fred Singer, May 11, 2017


Temp data in dispute can reverse conclusions about human influence on climate.

Exploring some of the intricacies of GW [Global Warming] science can lead to surprising results that have major consequences. In a recent invited talk at the Heartland Institute’s ICCC-12 [Twelfth International Conference on Climate Change], I investigated three important topics:

1. Inconsistencies in the surface temperature record.

2. Their explanation as artifacts arising from the misuse of data.

3. Thereby explaining the failure of IPCC to find credible evidence for anthropogenic global warming (AGW).

S. Fred Singer is professor emeritus at the University of Virginia and a founding director of the Science & Environmental Policy Project; in 2014, after 25 years, he stepped down as president of SEPP.  His specialty is atmospheric and space physics…

Video: analysis of NASA data shows modern temperature trends are not unusual

by Michael Thomas c/o Anthony Watts, May 10, 2017


An important aspect of the climate change debate can be summed up like this: “One position holds that medieval warm temperatures reached levels similar to the late twentieth century and maintained that the LIA was very cold, while another position holds that past variability was less than present extremes and that the temperature rise of recent decades is unmatched”. This video challenges whether the rise of recent decades is unmatched.

Quelles perspectives pour la politique pétrolière américaine ?

by Olivier Appert, Président du Conseil Français de l’Energie

in Connaissance des Energies, 10 mai 2017


Depuis la découverte du colonel Drake en 1859, le pétrole a joué de façon continue un rôle majeur dans la politique économique américaine et sur le plan international, il a été un outil clé du leadership américain. Au fil du temps, cette politique a dû composer avec une modification des rapports de force sur le marché pétrolier. La révolution récente des hydrocarbures non conventionnels a été un game changer majeur. Au fond, la politique pétrolière du nouveau président américain n’est qu’un retour aux sources.

Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

by Keenan et al., November 8, 2016, Nature


Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear.

 

web- Comments

Jim McIntosh , David Mulberry and 2 others posted in Air-Climate-Energy  (Jim McIntosh 9 May at 11:18):   Reposting because those AGW alarmists hate this report. Yes, plants are doing it better than any carbon tax and they do it for free… as long as we don’t cut them down. You’d think we’d learn by now that managing climate comes back to how we have mismanaged the planet’s forests.

 

Methane-munching microbes living in the deep biosphere for 400 million years: An analogue for extra-terrestrial life

by Linnaeus University, May 9, 2017 in ScienceDaily


It is becoming more and more appreciated that a major part of the biologic activity is not going on at the ground surface, but is hidden underneath the soil down to depths of several kilometres in an environment coined the “deep biosphere”. Studies of life-forms in this energy-poor system have implications for the origin of life on our planet and for how life may have evolved on other planets, where hostile conditions may have inhibited colonization of the surface environment. The knowledge about ancient life in this environment deep under our feet is extremely scarce.

Oldest evidence of life on land found in 3.48 billion-year-old Australian rocks

by UNSW Sydney, May 9, 2017 in ScienceDaily


Fossils discovered by UNSW scientists in 3.48 billion year old hot spring deposits in the Pilbara region of Western Australia have pushed back by 580 million years the earliest known existence of microbial life on land.

he Pilbara deposits are the same age as much of the crust of Mars, which makes hot spring deposits on the red planet an exciting target for our quest to find fossilised life there.”

Snow covers Moscow ahead of V-Day parade, on track to break 1922 precipitation record (PHOTOS)

Winter, apparently, does not want to step back and let spring in as May snow has once again covered the Russian capital ahead of the annual V-Day parade. Meteorologists say May 2017 is on track to break the precipitation record from 1922.

“Storms of such power in Moscow take place once in 30-35 years,” Evgency Tishkovets from the Fobos weather monitoring centre told local Govorit Moskva radio, adding that it is possible that this May can break an absolute record from 1922.

There Has Been No ‘Global’ Warming In The Southern Hemisphere, Equatorial Regions

by Kenneth Richard, May 4, 2017


According to overseers of the long-term instrumental temperature data, the Southern Hemisphere record is “mostly made up”.  This is due to an extremely limited number of available measurements both historically and even presently from the south pole to the equatorial regions.

Below is an actual e-mail conversation between the Climate Research Unit’s Phil Jones and climate scientist Tom Wigley.  Phil Jones is the one who is largely responsible for making up the 1850-present temperature data for the Met Office in the UK (HadCRUT).

 

They are diseases hidden in ice, and they are waking up

by Jasmin Fox-Skelly, BBC, May 4, 2017


Throughout history, humans have existed side-by-side with bacteria and viruses. From the bubonic plague to smallpox, we have evolved to resist them, and in response they have developed new ways of infecting us.

However, what would happen if we were suddenly exposed to deadly bacteria and viruses that have been absent for thousands of years, or that we have never met before?

Taking The Economist to Task for Unfounded Climate Catastrophe Fearmongering

by   Dr. John D. Harper, FGSA,FGAC, PGeol., former director of the Geological Survey of Canada © May 2017


I have recently been asked to comment on three articles published in The Economist. My background for such a response is as a Professor of Petroleum Geology and Sedimentology (ret.), a former Director-Energy for the Geological Survey of Canada, a former researcher in industry, and as an academic researcher on sea level changes and climate documentation through geologic time, Natural Resources of the Future and a couple of decades of studies in the Arctic.

1) Skating on thin ice: The thawing Arctic threatens an environmental catastrophe. Apr 27, 2017

2) The Arctic as it is known today is almost certainly gone. April 29, 2017

3) Thaw point: As the Arctic melts the world’s weather suffers. April 29, 2017

Battered Earth revived by mineral weathering after mass extinction

by University of Tromso, May 5, 2017 in ScienceDaily


Bedrock of Earth got severely beaten up by hothouse climate conditions during one of planet’s mass extinctions some 200 million years ago. But the process also allowed life to bounce back.

The hothouse conditions of this mass extinction caused oceans to eventually become depleted of oxygen, and thus become unbearable to live in. But weathering of silicate in the bedrock of Pangea, and subsequent formation of carbonate, tied up the CO2 into the minerals, slowly removing the greenhouse gas from the atmosphere.

New theory on how Earth’s crust was created

by McGill University , EPSL,  May 5, 2017, in ScienceDaily


Conventional theory holds that all of the early Earth’s crustal ingredients were formed by volcanic activity. Now, however, earth scientists have published a theory with a novel twist: some of the chemical components of this material settled onto Earth’s early surface from the steamy atmosphere that prevailed at the time.

More than 90% of Earth’s continental crust is made up of silica-rich minerals, such as feldspar and quartz. But where did this silica-enriched material come from? And could it provide a clue in the search for life on other planets?

Current Surface Mass Budget of the Greenland Ice Sheet

by DMI (Danish Meteorological Institute), May, 2017


Here you can follow the daily surface mass balance on the Greenland Ice Sheet. The snow and ice model from one of DMI’s climate models is driven every six hours with snowfall, sunlight and other parameters from a research weather model for Greenland, Hirlam-Newsnow.

See also, Study: Antarctica’s ice sheet survived warmer times, remains stable today

See also, Antarctic study shows central ice sheet is stable since milder times

EU trend of CO2 reduction seems to have stopped

by Peter Teffer, May 4, 2017 in euobserver


The EU’s statistical agency Eurostat announced Thursday (4 May) that CO2 emissions resulting from the EU’s energy use have “slightly decreased” in 2016, compared to the year before.

But Eurostat’s press release did not mention that the small decrease has not made up for the small increase in CO2 emissions the year before, and that more CO2 was emitted in 2016 than in 2014.

A propos de l’article « Réchauffement climatique » paru dans « Science … & pseudo-sciences »

by Jean-Claude Pont, c/o Uskek, 3 mai 2017


Jean-Claude Pont écrit au rédacteur en chef de « Science … & pseudo-sciences », à propos de l’article « réchauffement climatique » paru dans le numéro 317 de la revue. Il entend rectifier ce qu’il tient pour « des manquements importants, parfois des ambiguïtés, voulues ou inconscientes ».

Earth probably began with a solid shell

by University of Maryland, in Nature, February 27, 2017

in ScienceDaily


New research suggests that plate tectonics began later in Earth’s history

But new research suggests that this was not always the case. Instead, shortly after Earth formed and began to cool, the planet’s first outer layer was a single, solid but deformable shell. Later, this shell began to fold and crack more widely, giving rise to modern plate tectonics.

see also in French