Coral reefs are facing no shortage of threats including ocean acidification, overfishing, plastic pollution, and rising temperatures. Sea surface temperatures have been climbing on average for over a century, and ocean heat waves—which can trigger coral bleaching events—are becoming more common and severe. Scientists have long worried that as coral-killing spikes in temperature become more frequent, corals won’t have enough time to recover between bleaching events and will ultimately go extinct. But a new paper, published today in PLoS Genetics, suggests that corals might be able to adapt to another century of warming.
Well, seems there’s a surplus of Penguins now, in a place nobody thought to look, there’s an extra 1.5 million Penguins. From Woods Hole Oceanographic Institute.
As the Earth’s surface and atmosphere warm, the amount of moisture – water vapour – in the atmosphere will increase. Understanding the size of this increase is important for predicting future climates as water vapour is a significant greenhouse gas. Atmospheric moisture content also influences the patterns and intensity of rainfall events.
The relationship between temperature and moisture content can be explored by the study of intervals in Earth’s history when climates where significantly warmer than those seen in modern times, which necessitates a method for estimating ancient atmospheric moisture content.
Some recent studies show declines in average weights of polar bears compared to the 1980s, but none recorded an increase in the number of individuals starving to death or too thin to reproduce.14 Although some photos of starving bears have garnered media attention, most bears have been found to be in good-to-excellent condition. In fact, photos of fat bears seem to outnumber those of thin bears in recent years.
The influence of pHsw on both pHcf and the calcification rate of Neogoniolithon is plotted in Figure 1 below. As indicated there, this coralline algal species is able to elevate its pHcf so as to increase its rate of calcification under moderate levels of ocean acidification (pHsw of 7.91 and 8.05), which increase the authors say is “most likely due to CO2-fertilization of [algal] photosynthesis” that is limited in Neogoniolithon at these lower pCO2 conditions. (….)
Plastics make ideal vessels for colonizing microscopic organisms that could trigger disease if they come into contact with corals,” Lamb said. “Plastic items — commonly made of polypropylene, such as bottle caps and toothbrushes — have been shown to become heavily inhabited by bacteria
A 2010 analysis of 372 studies of 44 different marine species found that the world’s marine fauna is “more resistant to ocean acidification than suggested by pessimistic predictions” and that it “may not be the widespread problem conjured into the 21st century”
(…) And commenting on this latter finding, they acknowledge that “this is an important component of the biological pump and may contribute to CO2 removal from the atmosphere, mitigating anthropogenic increase in greenhouse gases.”
Paper Reviewed: McCulloch, M.T., D’Olivo, J.P., Falter, J., Holcomb, M. and Trotter, J.A. 2017. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nature Communications8: 15686, DOI:10.1038/ncomms15686
(…) The implications of the above findings are enormous, for they reveal that “pHcf upregulation occurs largely independent of changes in seawater carbonate chemistry, and hence ocean acidification,” demonstrating “the ability of the coral to ‘control’ what is arguably one of its most fundamental physiological processes, the growth of its skeleton within which it lives.
Georgiou, et al. 2015 have reported that coral reefs in the Australian Great Barrier Reef, near Heron Island, are insensitive to ocean pH changes. The location of Heron Island, about 257 miles (414 km) north of Brisbane, Queensland, Australia, is shown in figure 1 using Google maps
Recent findings suggest that episodes of very rapid sea-level rise of about 20m in less than 500 years occurred in the last deglaciation, caused by periods of catastrophic ice-sheet collapse as the Earth warmed after the last ice age about 20,000 years ago.
Lead author, PhD candidate at the University of Sydney, Kelsey Sanborn, has shown this sea-level rise event was associated with “drowning” or death of coral reefs in Hawaii.
In light of the above findings, it would appear that, given the near-global distribution of this EM fungi and its importance in stimulating ecosystem productivity, the positive impact of elevated CO2 on C. geophilumproduction (~50% increase for a 200 ppm rise) represents a welcomed benefit for the future of Earth’s forests.
A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm−1 is largely explained by photorespiratory and mesophyll effects.
With the help of satellite observations from 188 lakes worldwide, scientists have shown that the warming of large lakes amplifies their color. Lakes which are green due to their high phytoplankton content tend to become greener in warm years as phytoplankton content increases. Clear, blue lakes with little phytoplankton, on the other hand, tend to become even bluer in warm years caused by declines in phytoplankton. Thus, contrary to previous assumptions, the warming of lakes tends to amplify their richness or poverty of phytoplankton.
by Alan Jones, interviews peter Ridd, July 28, 2017 in JoNova
Corals have a little thermometer built in them, when you take a core of them from many years ago we know what the temperature of the water was back when Captain Cook sailed up the coast, it was actually about the same temperature then. It was colder 100 years ago, but it has recovered from that. The temperatures on the reef are not even significantly warmer than average on a hundred year timescale.
Corals that bleach in one year will be less susceptible to bleaching in following years
Professor Wolanski said the study was subjective to the extent that there was a lack of oceanographic field data in the Great Barrier Reef itself for the 2016 el Nino event. By contrast, the amount of oceanographic field data in the Torres Strait and the northern Coral Sea was very good.
“What we presented is our best-informed attempt to reveal the mechanisms involved in causing the event, based on the available oceanographic data combined with the existing body of knowledge on the water circulation in and around the Torres Strait/Northern Great Barrier Reef region.”
The increasing absorption of CO2 and associated decline in seawater pH values is thought to pose direct harm to marine life in the decades and centuries to come by affecting rates of survival, calcification, growth, development and/or reproduction. However, as ever more pertinent evidence accumulates, a much more optimistic viewpoint is emerging.
A controlled lab study led by Mote Marine Laboratory and published June 1 in the peer-reviewed journal PLOS ONE revealed that black band disease was less deadly to mountainous star coral (Orbicella faveolata) as water acidified, or decreased in pH.
Regardless of the actual mechanism responsible for the densely aggregated corals to maintain calcification rates in the face of ocean acidification, the study of Evensen and Edmunds, in their words, offers “a compelling case for differential densities of branching coral colonies (i.e. aggregation types) mediating the sensitivity of coral communities in at least some habitats” and it further supports “recent indications that neighboring organisms, such as conspecific coral colonies in the present example, can create small-scale refugia from the negative effects of ocean acidification” And that is more good news for those concerned about the future health of these important marine ecosystems.
Stony corals may be more resilient to ocean acidification than once thought, according to a Rutgers University study that shows they rely on proteins to help create their rock-hard skeletons.
“The bottom line is that corals will make rock even under adverse conditions,” said Paul G. Falkowski, a distinguished professor who leads the Environmental Biophysics and Molecular Ecology Laboratory at Rutgers University-New Brunswick. “They will probably make rock even as the ocean becomes slightly acidic from the burning of fossil fuels.”
Writing as background for their work, Ventura et al. (2016) say that “non-calcifying photosynthetic anthozoans have emerged as a group that may thrive under high carbon dioxide partial pressure (pCO2) conditions via increased productivity,” yet they add that “the physiological mechanisms underlying this potential success are unclear.”
L’acidification n’est pas une simple réponse statique à l’augmentation de la concentration de CO2 dans l’atmosphère : c’est la résultante de processus biologiques et physico-chimiques qui entraînent une répartition inégale du carbone sur la verticale de l’océan. D’autre part la vie océanique a survécu à des niveaux beaucoup plus élevés de CO2 depuis des millions d’années dans le passé.
The clear link between mortality and sea level fall also calls for a refinement of the hierarchy of El Niño impacts and their consequences on coral reefs.
La géologie, une science plus que passionnante … et diverse