Archives par mot-clé : Algae

Deep Purple — future biological darkening of the Greenland Ice Sheet

by GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre, October 12, 2019  in WUWT


Purple algae are making the western Greenland Ice Sheet melt faster, as the algae darken the ice surface and make it absorb more sunlight.

 

The ERC (European Research Council) has awarded an €11 million Euro Synergy grant called DEEP PURPLE to Liane G. Benning at the German Research Centre for Geosciences (GFZ) Potsdam, Germany, Alexandre Anesio at Aarhus University, Denmark and Martyn Tranter at University of Bristol, UK. Their common goal is to examine over the next six years (2020-2026) the role of glacier algae in progressively darkening the Greenland Ice Sheet surface in a warming climate.

The three researchers have already changed our understanding of why the ice darkens during the melt season by identifying the purple-pigmented ice algal blooms in the ice surface. These glacier algae are pigmented deep purple to shield their vital elements from the intense UV radiation in sunlight. During the melt season there are so many of these deep purple algae that they look as black as the soot from tundra fires. They form a dark band that has been progressively growing down the western side of the Greenland Ice Sheet during the summer melt season for the last 20 years, causing increased melting of the darkening ice.

Just why these glacier algae grow so densely is not really known at the moment, and neither is whether they will grow in the new melt zones on the ice sheet surface, to the north and to the ice sheet interior, as the climate continues to warm.

Project DEEP PURPLE

Questions such as this need answering if future sea level rise is to be predicted accurately, since Greenland melt is a major driver of current sea level rise.

Project DEEP PURPLE aims to answer these questions over the next six years, combining curisoity driven science about how the glacier algae grow and interact with their icy habitat, and societally relevant research into the processes that lead to ice surface darkening that are needed by ice melt modellers.

The scientists will work around many different sites in Greenland, making measurements of surface darkening, glacier algae density, how much soot and dust the algae trap on the surface and the physical properties of the melting ice surface to finally understand, how biological darkening occurs, and to predict where and when it will occur in the future.

Molecular fossils from phytoplankton reveal secular Pco2 trend over the Phanerozoic

by C.R. Witkowski et al., November28,  2018 in SciAdvances


Here, we reconstructed Phanerozoic PCO2 from a single proxy: the stable carbon isotopic fractionation associated with photosynthesis (Ɛp) that increases as PCO2 increases. This concept has been widely applied to alkenones, but here, we expand this concept both spatially and temporally by applying it to all marine phytoplankton via a diagenetic product of chlorophyll, phytane. We obtained data from 306 marine sediments and oils, which showed that Ɛp ranges from 11 to 24‰, agreeing with the observed range of maximum fractionation of Rubisco (i.e., 25 to 28‰). The observed secular PCO2 trend derived from phytane-based Ɛp mirrors the available compilations of PCO2over the past 420 Ma, except for two periods in which our higher estimates agree with the warm climate during those time periods. Our record currently provides the longest secular trend in PCO2 based on a single marine proxy, covering the past 500 Ma of Earth history

Fig. 2Ɛp calculated from phytane in Witkowski et al., 2018

See also here