Archives par mot-clé : Mars

Rocks show Mars once felt like Iceland

by Rice University, Jan 21, 2021 in ScienceDaily


Crater study offers window on temperatures 3.5 billion years ago

Once upon a time, seasons in Gale Crater probably felt something like those in Iceland. But nobody was there to bundle up more than 3 billion years ago.

The ancient Martian crater is the focus of a study by Rice University scientists comparing data from the Curiosity rover to places on Earth where similar geologic formations have experienced weathering in different climates.

Iceland’s basaltic terrain and cool weather, with temperatures typically less than 38 degrees Fahrenheit, turned out to be the closest analog to ancient Mars. The study determined that temperature had the biggest impact on how rocks formed from sediment deposited by ancient Martian streams were weathered by climate.

The study by postdoctoral alumnus Michael Thorpe and Martian geologist Kirsten Siebach of Rice and geoscientist Joel Hurowitz of State University of New York at Stony Brook set out to answer questions about the forces that affected sands and mud in the ancient lakebed.

Data collected by Curiosity during its travels since landing on Mars in 2012 provide details about the chemical and physical states of mudstones formed in an ancient lake, but the chemistry does not directly reveal the climate conditions when the sediment eroded upstream. For that, the researchers had to look for similar rocks and soils on Earth to find a correlation between the planets.

Field Geology on Mars Reveals Evidence of Megaflood

by D. Middleton, Nov 23, 2020 in WUWT


Field geology at Mars’ equator points to ancient megaflood
By Blaine Friedlander | November 18, 2020

Floods of unimaginable magnitude once washed through Gale Crater on Mars’ equator around 4 billion years ago – a finding that hints at the possibility that life may have existed there, according to data collected by NASA’s Curiosity rover and analyzed in joint project by scientists from Jackson State University, Cornell, the Jet Propulsion Laboratory and the University of Hawaii.

The research, “Deposits from Giant Floods in Gale Crater and Their Implications for the Climate of Early Mars,” was published Nov. 5 in Nature Scientific Reports.

 

“This composite, false-color image of Mount Sharp inside Gale crater on Mars shows geologists a changing planetary environment. On Mars, the sky is not blue, but the image was made to resemble Earth so that scientists could distinguish stratification layers. NASA/JPL/Provided” (Cornell Chronicle)

The full text of the excellent paper is available:

[…]

“We identified megafloods for the first time using detailed sedimentological data observed by the rover Curiosity,” said co-author Alberto G. Fairén, a visiting astrobiologist in the College of Arts and Sciences. “Deposits left behind by megafloods had not been previously identified with orbiter data.”

[…]

The most likely cause of the Mars flooding was the melting of ice from heat generated by a large impact, which released carbon dioxide and methane from the planet’s frozen reservoirs. The water vapor and release of gases combined to produce a short period of warm and wet conditions on the red planet.

[…]

The Curiosity rover science team has already established that Gale Crater once had persistent lakes and streams in the ancient past. These long-lived bodies of water are good indicators that the crater, as well as Mount Sharp within it, were capable of supporting microbial life.

“Early Mars was an extremely active planet from a geological point of view,” Fairén said. “The planet had the conditions needed to support the presence of liquid water on the surface – and on Earth, where there’s water, there’s life.

“So early Mars was a habitable planet,” he said. “Was it inhabited? That’s a question that the next rover Perseverance … will help to answer.”

Perseverance, which launched from Cape Canaveral on July 30, is scheduled to reach Mars on Feb. 18, 2021.

[…]

Field geology at Mars’ equator points to ancient megaflood

by Cornell University, Nov 20,2020 in ScienceDaily


Floods of unimaginable magnitude once washed through Gale Crater on Mars’ equator around 4 billion years ago — a finding that hints at the possibility that life may have existed there, according to data collected by NASA’s Curiosity rover and analyzed in joint project by scientists from Jackson State University, Cornell University, the Jet Propulsion Laboratory and the University of Hawaii.

The research, “Deposits from Giant Floods in Gale Crater and Their Implications for the Climate of Early Mars,” was published Nov. 5 in Scientific Reports.

The raging megaflood — likely touched off by the heat of a meteoritic impact, which unleashed ice stored on the Martian surface — set up gigantic ripples that are tell-tale geologic structures familiar to scientists on Earth.

“We identified megafloods for the first time using detailed sedimentological data observed by the rover Curiosity,” said co-author Alberto G. Fairén, a visiting astrobiologist in the College of Arts and Sciences. “Deposits left behind by megafloods had not been previously identified with orbiter data.”

As is the case on Earth, geological features including the work of water and wind have been frozen in time on Mars for about 4 billion years. These features convey processes that shaped the surface of both planets in the past.

This case includes the occurrence of giant wave-shaped features in sedimentary layers of Gale crater, often called “megaripples” or antidunes that are about 30-feet high and spaced about 450 feet apart, according to lead author Ezat Heydari, a professor of physics at Jackson State University.

The antidunes are indicative of flowing megafloods at the bottom of Mars’ Gale Crater about 4 billion years ago, which are identical to the features formed by melting ice on Earth about 2 million years ago, Heydari said.

Giant waves of sand are moving on Mars

by K. Kornei, July 23, 2020 in ScienceAAAS


Researchers have spotted large waves of martian sand migrating for the first time. The discovery dispels the long-held belief that these “megaripples” haven’t moved since they formed hundreds of thousands of years ago. They’re also evidence of stronger-than-expected winds on the Red Planet.

It’s pretty staggering that humans can detect these changes on Mars, says Ralph Lorenz, a planetary scientist at the Johns Hopkins University Applied Physics Laboratory who was not involved in the research. “We can now measure processes on the surface of another planet that are just a couple times faster than our hair grows.”

Megaripples are found in deserts on Earth, often between dunes. Waves in the sand spaced up to tens of meters apart, they’re a larger version of ripples that undulate every 10 centimeters or so on many sand dunes.

The researchers focused on two sites near the equator of Mars. They analyzed roughly 1100 megaripples in McLaughlin crater and 300 in the Nili Fossae region. They looked for signs of movement by comparing time-lapse images of each site—taken 7.6 and 9.4 years apart, respectively. Megaripples in both regions advanced by about 10 centimeters per year, the team reports in the Journal of Geophysical Research: Planets. That’s about how fast megaripples move in the Lut Desert of Iran.

It’s a surprise that megaripples move at all on Mars, says Jim Zimbelman, a planetary geologist at the Smithsonian Institution’s Air and Space Museum. Just a few decades ago, there was no evidence that sands on Mars were mobile, he says. “None of us thought that the winds were strong enough.”

Megaripples near a sand dune on Mars.

NASA/JPL/UNIVERSITY OF ARIZONA

Impact-induced amino acid formation on Hadean Earth and Noachian Mars

by Takeuchi et al., June8, 2020 in SciReports Open Access


Abstract

Abiotic synthesis of biomolecules is an essential step for the chemical origin of life. Many attempts have succeeded in synthesizing biomolecules, including amino acids and nucleobases (e.g., via spark discharge, impact shock, and hydrothermal heating), from reduced compounds that may have been limited in their availabilities on Hadean Earth and Noachian Mars. On the other hand, formation of amino-acids and nucleobases from CO2 and N2 (i.e., the most abundant C and N sources on Earth during the Hadean) has been limited via spark discharge. Here, we demonstrate the synthesis of amino acids by laboratory impact-induced reactions among simple inorganic mixtures: Fe, Ni, Mg2SiO4, H2O, CO2, and N2, by coupling the reduction of CO2, N2, and H2O with the oxidation of metallic Fe and Ni. These chemical processes simulated the possible reactions at impacts of Fe-bearing meteorites/asteroids on oceans with a CO2 and N2 atmosphere. The results indicate that hypervelocity impact was a source of amino acids on the Earth during the Hadean and potentially on Mars during the Noachian. Amino acids formed during such events could more readily polymerize in the next step of the chemical evolution, as impact events locally form amino acids at the impact sites.

Stromatolites on Mars?

by D. Middleton, April 15, 2020 in WUWT


Evidence is steadily mounting that Mars could have supported life in the past and there are tantalizing indications that the Red Planet might still support be microscopic organisms. So, unlike the Face on Mars and impact craters circled up on satellite images, there is reason to believe that geologic features resembling stromatolites, might actually be something like stromatolites… But, we can’t possibly know until astronauts bring Martian sedimentary rocks back home to Earth.

Stromatolites
Lower Proterozic (2.3 billion)
Eastern Andies South of Cochabamba, District of Cochabamba, Bolivia, South America
Fossil Museum Dot Net

Scientists: Mars Has A 95% CO2 Atmosphere…But ‘There Is Little To Retain Heat On The Planet’

by K. Richard, December 2, 2019 in NoTricksZone


Earth’s atmosphere contains 400 ppm CO2 (0.04%). Mars has a 950,000 ppm (95%) CO2 atmosphere. But Mars has surface temperatures that are about -75°C colder on average than Earth’s because atmospheric density, or pressure, is the “game changer” largely determining planetary temperatures.

Surface temperatures on Mars

The average surface temperature of a planetary body is significantly determined by its distance from the Sun.

According to the NASA Jet Propulsion Laboratory, Mars is close enough to the Sun to have its surface temperatures reach 35°C (95°F) at the equator during summer.

During winter, however, the Martian temperature dips to -90°C (-130°F).

The average surface temperature for Mars is about -60°C (-80°F).

Mars: Oxygen-rich, life-supporting liquid water?

by California Institute of Technology, October 22, 2018 in ScienceDaily


A team led by scientists at Caltech and the Jet Propulsion Laboratory (JPL), which Caltech manages for NASA, has calculated that if liquid water exists on Mars, it could — under specific conditions — contain more oxygen than previously thought possible. According to the model, the levels could even theoretically exceed the threshold needed to support simple aerobic life.

That finding runs contrary to the current, accepted view of Mars and its potential for hosting habitable environments. The existence of liquid water on Mars is not a given. Even if it is there, researchers have long dismissed the idea that it might be oxygenated, given that Mars’s atmosphere is about 160 times thinner than that of Earth and is mostly carbon dioxide.

Ancient Mars had right conditions for underground life, new research suggests

by Brown University, September 24, 2018 in ScienceDaily/EPSL


A new study shows evidence that ancient Mars probably had an ample supply of chemical energy for microbes to thrive underground.

“We showed, based on basic physics and chemistry calculations, that the ancient Martian subsurface likely had enough dissolved hydrogen to power a global subsurface biosphere,” said Jesse Tarnas, a graduate student at Brown University and lead author of a study published in Earth and Planetary Science Letters. “Conditions in this habitable zone would have been similar to places on Earth where underground life exists.”

New research shows that ancient Mars likely had ample chemical energy to support the kinds of underground microbial colonies that exist on Earth.
Credit: NASA / JPL

The Medusae Fossae Formation as the single largest source of dust on Mars

by L. Ojha et al., July 20, 2018 in NatureCommunications (open access)


Transport of fine-grained dust is one of the most widespread sedimentary processes occurring on Mars today. In the present climate, eolian abrasion and deflation of rocks are likely the most pervasive and active dust-forming mechanism. Martian dust is globally enriched in S and Cl and has a distinct mean S:Cl ratio. Here we identify a potential source region for Martian dust based on analysis of elemental abundance data …

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

by Geological Society of America and in Geology, April 19,2018 in ScienceDaily


.pdf of the article

In early 2017 scientists announced the discovery of possible desiccation cracks in Gale Crater, which was filled by lakes 3.5 billion years ago. Now, a new study has confirmed that these features are indeed desiccation cracks, and reveals fresh details about Mars’ ancient climate.

“We are now confident that these are mudcracks,” explains lead author Nathaniel Stein, a geologist at the California Institute of Technology in Pasadena. Since desiccation mudcracks form only where wet sediment is exposed to air, their position closer to the center of the ancient lake bed rather than the edge also suggests that lake levels rose and fell dramatically over time.