Les réacteurs nucléaires existaient déjà il y a 2 milliards d’années au Gabon

par Alain Préat

Nos premiers réacteurs nucléaires datent des années 1950… et suivent de près de 2 milliards d’années les 17 « réacteurs » naturels qui ont fonctionné de manière stable pendant 100 000 à 500 000 ans sur une période d’environ un million d’années. Ils produisirent de l’énergie avec des rendements modestes (100 kilowatts en moyenne par réacteur, bien inférieurs aux réacteurs actuels produisant 1 à 1,5 gigawatt, soit au moins 1 000 fois plus). Ces réacteurs se sont formés entre 12 et 250 m de profondeur dans les couches gréseuses du Paléoprotérozoïque[1] du bassin sédimentaire de Franceville au sud du Gabon à Oklo (16 réacteurs) et à 30 km au SE d’Oklo à Bangombé (un seul réacteur) suite à une série de processus géologiques aléatoires qui ont mené à un enrichissement de l’uranium. La taille de ces réacteurs est variable, le plus grand, situé à 18 m de profondeur, formant une lentille épaisse de 20 à 50 cm sur 12 m de longueur. Leur « cœur » consistait en une couche de 5 à 20 cm d’épaisseur d’uraninite (40 à 60% d’UO2) emballée dans des argiles d’altération formées à 400° C suite à la fission nucléaire. Les produits radioactifs (plutonium, thorium, plomb…) sont pour la plupart restés à proximité des réacteurs depuis 2 milliards d’années, sans causer de dommages particuliers (l’encaissant n’a été affecté que sur quelques centimètres à quelques mètres), ce qui montrerait que le stockage géologique des déchets radioactifs est possible sur de longues périodes de temps. Les conditions de fonctionnement de ces réacteurs naturels étaient semblables aux actuels basés sur la production des neutrons rapides. Ces derniers sont ralentis par un modérateur (eau ou graphite) et un agent refroidissant (eau) permettant l’entretien de la réaction de fission de l’235U, un des trois isotopes[2] uranifères présents sur la Terre (0,720 % de l’uranium naturel) avec l’238U (99,275 %) et l’234U (0,005%). L’235U étant peu abondant par rapport à l’isotope 238U doit donc être artificiellement enrichi (3 à 4 %) afin d’être utilisé comme combustible dans les centrales nucléaires actuelles. La réaction peut être spontanément initiée par l’238U. La réaction de fission en chaîne nécessite également des absorbeurs de neutrons (cadmium, iridium, carbure de bore) sous forme de barres mises en contact avec le combustible (il s’agit de barres de contrôle permettant de museler la réaction en chaîne). Il y a 2 milliards d’années le taux d’235U présent dans l’uranium naturel avec l’238U était beaucoup plus important qu’aujourd’hui car la vitesse de désintégration de l’235U est six fois plus rapide que celle de l’238U, l’uranium naturel pouvait ainsi être à la base d’une réaction en chaîne spontanée. Finalement il faut quatre conditions pour qu’un réacteur naturel puisse exister (suite lien web).

Laisser un commentaire