Now, people often discuss procedures like “removing the effects of the El Nino from the global temperature record”. What they mean is that they have noted the similarity between the temperature of the NINO3.4 region and the global temperature. Figure 1 shows that relationship as seen in the CERES data.
The West Antarctic Ice Sheet, a landbound mass of ice larger than Mexico, experienced substantial surface melt through the austral summer of 2015-2016 during one of the largest El Niño events of the past 50 years, according to scientists who had been conducting the first comprehensive atmospheric measurements in the region since the 1960s.
The reduction in global temperature after the recent El Nino continues though not as swiftly as some predicted. The next few months will be interesting to see if it returns to levels seen before the recent El Nino took place when global annual average temperatures changed little for at least 15 years.
In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years.
The clear link between mortality and sea level fall also calls for a refinement of the hierarchy of El Niño impacts and their consequences on coral reefs.
Critical German climate site wobleibtdieererwaermung.de (WBDE) reports that the earth’s surface is cooling, and presents the latest chart from NCEP. As of April 11, the measured global values continue to decline (black curve) as do the computed values for April 18.
The time-delayed post El Niño cooling is now showing up in the UAH and RSS satellite data.
The recent El Nino is cooling down as shown clearly in both sea surface temperatures and lower troposphere air temperatures. The two relevant data sets are UAH v.6 and HadSSTv3.1 now provide averages for the month of March 2017.
Origine géothermique de El Nino : quelques évidences?
… Based on this information, it is most likely these eruptive El Niño heat pulses are the result of flow from the various individual components of a giant Solomon Island Area seafloor circulating system. Individual geological components include fractured rock layers, hydrothermal vents, seafloor volcanoes, and open faults. The circulating system is activated by upward movement of deep magma chambers located beneath the Solomon Island area. This movement triggers a high-magnitude earthquake swarm, which in turn activates the seafloor circulating system….
La géologie, une science plus que passionnante … et diverse