Archives par mot-clé : Geology

A 500-million-year survey of Earth’s climate reveals dire warning for humanity

by P. Voosen, May 22, 2019 in AAAS/Science


When it opens next month, the revamped fossil hall of the Smithsonian Institution’s National Museum of Natural History in Washington, D.C., will be more than a vault of dinosaur bones. It will show how Earth’s climate has shifted over the eons, driving radical changes in life, and how, in the modern age, one form of life—humans—is, in turn, transforming the climate.

To tell that story, Scott Wing and Brian Huber, a paleobotanist and paleontologist, respectively, at the museum, wanted to chart swings in Earth’s average surface temperature over the past 500 million years or so. The two researchers also thought a temperature curve could counter climate contrarians’ claim that global warming is no concern because Earth was much hotter millions of years ago. Wing and Huber wanted to show the reality of ancient temperature extremes—and how rapid shifts between them have led to mass extinctions. Abrupt climate changes, Wing says, “have catastrophic side effects that are really hard to adapt to.”

But actually making the chart was unexpectedly challenging—and triggered a major effortto reconstruct the record. Although far from complete, the research is already showing that some ancient climates were even more extreme than was thought.

Volcanic ash may have a bigger impact on the climate than we thought

by University of Colorado at Boulder, Sep 11, 2020 in ScienceDaily


“They saw some large particles floating around in the atmosphere a month after the eruption,” Zhu said. “It looked like ash.”

She explained that scientists have long known that volcanic eruptions can take a toll on the planet’s climate. These events blast huge amounts of sulfur-rich particles high into Earth’s atmosphere where they can block sunlight from reaching the ground.

Researchers haven’t thought, however, that ash could play much of a role in that cooling effect. These chunks of rocky debris, scientists reasoned, are so heavy that most of them likely fall out of volcanic clouds not long after an eruption.

Zhu’s team wanted to find out why that wasn’t the case with Kelut. Drawing on aircraft and satellite observations of the unfolding disaster, the group discovered that the volcano’s plume seemed to be rife with small and lightweight particles of ash — tiny particles that were likely capable of floating in the air for long periods of time, much like dandelion fluff.

Journal Reference:

  1. Yunqian Zhu, Owen B. Toon, Eric J. Jensen, Charles G. Bardeen, Michael J. Mills, Margaret A. Tolbert, Pengfei Yu, Sarah Woods. Persisting volcanic ash particles impact stratospheric SO2 lifetime and aerosol optical properties. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-18352-5

Meteorite study suggests Earth may have been wet since it formed

by Washington University in St. Louis, Aug 27, 2020 in ScienceDaily


Enstatite chondrite meteorites, once considered ‘dry,’ contain enough water to fill the oceans — and then some

A new study finds that Earth’s water may have come from materials that were present in the inner solar system at the time the planet formed — instead of far-reaching comets or asteroids delivering such water. The findings published Aug. 28 in Science suggest that Earth may have always been wet.

Researchers from the Centre de Recherches Petrographiques et Geochimiques (CRPG, CNRS/Universite de Lorraine) in Nancy, France, including one who is now a postdoctoral fellow at Washington University in St. Louis, determined that a type of meteorite called an enstatite chondrite contains sufficient hydrogen to deliver at least three times the amount of water contained in the Earth’s oceans, and probably much more.

Enstatite chondrites are entirely composed of material from the inner solar system — essentially the same stuff that made up the Earth originally.

“Our discovery shows that the Earth’s building blocks might have significantly contributed to the Earth’s water,” said lead author Laurette Piani, a researcher at CPRG. “Hydrogen-bearing material was present in the inner solar system at the time of the rocky planet formation, even though the temperatures were too high for water to condense.”

Le Précambrien : les bactéries, la tectonique des plaques et l’oxygène

by A. Préat (.pdf), 21 août 2020 in Bull.Séanc.Acad.R.Sci.OutreMer


 Mots-clés. — Écosystèmes microbiens; Isotopes du carbone et du soufre; Oxydoréduction; Oxygène; Océans et atmosphère. 

Résumé. — L’oxygène n’est pas apparu aussi brutalement qu’on le pensait sur notre planète. Malgré un apport en oxygène lié aux cyanobactéries dès l’archéen, ce ne sont pas ces microorganismes qui sont à la base de la première grande «révolution» de l’oxygène qui a eu lieu à la limite archéen/paléoprotérozoïque (il y a deux milliards et demi d’années) dans l’atmosphère, lors du Grand Événement d’Oxydation. Ce sont les processus liés au cycle de la tectonique des plaques (activité mantellique et périodes intenses d’érosion/altération) qui ont contribué de manière déterminante à l’augmentation de la concentration de l’oxygène atmosphérique voici deux milliards et demi d’années. Les deux principaux processus responsables de cette augmentation sont liés à l’enfouissement de la matière organique et de la pyrite. L’altération des séries riches de ces deux composants conditionnera ensuite pendant près d’un milliard d’années la composition chimique des océans en oxygène, soufre et fer. Au cours du temps, l’oxygène proviendra de l’activité des cyanobactéries et l’atmosphère réductrice du début de l’archéen sera remplacée par une atmosphère oxydante à la fin du précambrien. 

Keywords. — Microbial Ecosystems; Carbon and Sulfur Isotopes; Oxidation Reduction; Oxygen; Oceans and Atmosphere. 

Summary. — The Precambrian: Bacteria, Plate Tectonics and Oxygen. — Oxygen did not appear as abruptly as we thought on our planet. Despite an oxygen supply related to cyanobacteria since the Archean, these microorganisms are not at the origin of the first great oxygen revolution that took place at the Archean/Paleoproterozoic boundary (two and a half billion years) in the atmosphere during the Great Oxidation Event. Two processes related to the cycle of plate tectonics (mantle activity and intense periods of erosion/weathering) were mostly involved in the increase of the atmospheric oxygen concentration two and a half billion years ago. These two main processes are related to the burial of organic matter and pyrite. The alteration of series with high contents of these two elements will then condition for nearly one billion years the oxygen, sulfur and iron chemical composition of the oceans. Oxygen will finally come from the activity of cyanobacteria and the early Archean reducing atmosphere will be replaced by an oxidizing atmosphere at the end of the Precambrian. 

Fig. 3. — Évolution des compositions chimiques et des organismes des océans en trois phases majeures. À l’archéen, les océans contiennent peu d’oxygène et sont relativement riches en fer (colonne de gauche), alors que dans les océans modernes (colonne de droite) l’oxygène est abondant et le fer en quantité limitée. Entre ces deux phases, un long intervalle d’un peu plus d’un milliard d’années est caractérisé par des océans avec des concentrations modérées d’oxygène en surface et des eaux plus profondes riches en H2S en présence de quantités limitées de fer, de molybdène et d’autres éléments en traces importants dans les cycles biologiques. La colonne centrale représente l’«Océan de Canfield» et caractérise le Boring Billion. L’H2S produit (suite à la présence des sulfates, cf. texte) réagit avec le fer ferreux pour former la pyrite. Le fer ferreux n’est donc pas consommé par l’oxygène durant cet intervalle de temps, mais par l’H2S. L’Événement Lomagundi-Jatuli a lieu à environ 2,1 Ga dans le GOE (Great Oxidation Event), marqué par une très forte production d’oxygène. Le début du GOE est marqué par l’oxydation de la pyrite sur les cratons et la disparition des minéraux détritiques sensibles aux conditions d’oxydoréduction des éléments chalcophiles ou sidérophiles (uraninite, sidérite, pyrite, molybdénite, etc.). Les deux grands épisodes «Terre Boule de Neige» à 2,3 Ga («Glaciation Makganyena») et 0,635 («Glaciation Marinoenne»), et d’autres événements glaciaires moins importants ne sont pas reportés ni discutés dans le texte (modifié d’après Knoll 2003). 

 

More Proof That Geologic Forces Are Melting Thwaites and Pine Island Glaciers

by J.E. Kamis, July 20, 2020 in ClimateChangeDispatch


As previously explained before, increased melting/ice loss of Antarctica’s Pine Island and Thwaites glaciers is the result of geologically induced heat flow emitted from underlying bedrock “hotspots,” not climate change (Figure 1).

All but a very minor amount of Antarctica’s glacial ice melting occurs in the western portion of this continent. The most rapid and greatest ice mass loss areas are in West Antarctica.

They are positioned directly above geographically extensive and high heat flow geological features. This association is thought to be strong evidence of a cause and effect relationship.

Discussion of evidence supporting the contention that the melting of Pine Island and Thwaites glaciers is the result of bedrock heat flow begins with a review of the regional geology (refer to Figure 1).

The Pluton Rich “hotspot” is a 61,000-thousand-square-mile area that is home to numerous high-heat-flow lava pockets that are bounded and fueled by deep earth reaching faults.

Several detailed research studies document the existence and configuration of this area. This lies along the West Antarctic Rift.

The Mount Erebus Volcanic Complex “Hotspot” is the most geologically active portion of Antarctica. It is a 25,000-square-mile high-heat-flow area, much of which is absent of glacial ice.

The absence of glacial ice across a huge portion of West Antarctica is extremely unusual and exceedingly difficult to explain by invoking global warming.

Figure 1. NASA map of Antarctica’s ice sheet thickness 1992-2017. Greatest ice thickness losses shaded red. The outline of three regional sub-glacial geological Hotspots” are outlined in red (Image by NASA, most labeling by J. Kamis).

Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation

by de la Vega et al., 2020 in Nature OPEN  ACCESS


Abstract

The Piacenzian stage of the Pliocene (2.6 to 3.6 Ma) is the most recent past interval of sustained global warmth with mean global temperatures markedly higher (by ~2–3 °C) than today. Quantifying CO2 levels during the mid-Piacenzian Warm Period (mPWP) provides a means, therefore, to deepen our understanding of Earth System behaviour in a warm climate state. Here we present a new high-resolution record of atmospheric CO2 using the δ11B-pH proxy from 3.35 to 3.15 million years ago (Ma) at a temporal resolution of 1 sample per 3–6 thousand years (kyrs). Our study interval covers both the coolest marine isotope stage of the mPWP, M2 (~3.3 Ma) and the transition into its warmest phase including interglacial KM5c (centered on ~3.205 Ma) which has a similar orbital configuration to present. We find that CO2 ranged from 389+388389−8+38ppm to 331+1311,331−11+13,ppm, with CO2 during the KM5c interglacial being 371+3229371−29+32ppm (at 95% confidence). Our findings corroborate the idea that changes in atmospheric CO2 levels played a distinct role in climate variability during the mPWP. They also facilitate ongoing data-model comparisons and suggest that, at present rates of human emissions, there will be more CO2 in Earth’s atmosphere by 2025 than at any time in at least the last 3.3 million years.

Carbon dioxide level unprecedented in 15 MY… More evidence it’s not the climate control knob!avid Middl

by David Middleton, July 10, 2020 in WUWT


If the Earth was 3-4 °C warmer with a much higher sea level 3.3 million years ago, with about the same CO2 concentration, what does this say about the potency of it as a climate control knob?

The last time CO2 levels were this low, Earth was in the deepest ice age of the Phanerozoic Eon, the Pennsylvanian (Late Carboniferous)-Early Permian.

Figure 5. Phanerozoic temperatures (pH-corrected) and carbon dioxide. The Miocene is the first epoch of the Neogene Period (Berner et al, 2001 and Royer et al., 2004) (older is toward the left).

Mass spectrometry and climate science. Part I: Determining past climates

by Judith Curry, June 16, 2020 in ChRotter_WUWT


Mass spectrometry is essential for research in climate science.

Understanding climate requires having sufficient knowledge about past climate and about the important factors that are influencing climate today, so that reliable models can be developed to predict future climate.

Analytical chemistry enables measurement of the chemical composition of materials, from the amounts of elements and their isotopes in a sample to the identity and concentrations of substances in the most complex biological organisms.

This two-part series covers the application of a powerful analytical chemistry technology — mass spectrometry — to two important areas in climate science:

  • Obtaining reliable information about past climate
  • Understanding composition and behavior of aerosols, which have a large impact on climate

The examples that are included for each topic were selected out of many published papers on the study of climate using mass spectrometry, partly because they feature a very wide range of types of these instruments. The authors were very helpful in providing me with information on their work.[1]

The technology described in this essay may at times be quite complicated! However, I hope that the results of each study will be understandable.

Part 1: Determining past climate

Figure 1: Age of samples taken at indicated depth below surface of ice core

Giant tectonic plate under Indian Ocean is breaking in two

by Geggel L., May 21, 2020 in LiveScience


The giant tectonic plate under the Indian Ocean is going through a rocky breakup … with itself.

In a short time (geologically speaking) this plate will split in two, a new study finds.

To humans, however, this breakup will take an eternity. The plate, known as the India-Australia-Capricorn tectonic plate, is splitting at a snail’s pace — about 0.06 inches (1.7 millimeters) a year. Put another way, in 1 million years, the plate’s two pieces will be about 1 mile (1.7 kilometers) farther apart than they are now.

“It’s not a structure that is moving fast, but it’s still significant compared to other planet boundaries,” said study co-researcher Aurélie Coudurier-Curveur, a senior research fellow of marine geosciences at the Institute of Earth Physics of Paris.

Related: In photos: Ocean hidden beneath Earth’s surface

For instance, the Dead Sea Fault in the Middle East is moving at about double that rate, or 0.2 inches (0.4 centimeters) a year, while the San Andreas Fault in California is moving about 10 times faster, at about 0.7 inches (1.8 cm) a year.

The plate is splitting so slowly and it’s so far underwater, researchers almost missed what they’re calling the “nascent plate boundary.” But two enormous clues — that is, two strong earthquakes originating in a strange spot in the Indian Ocean — suggested that Earth-changing forces were afoot.

On April 11, 2012, a magnitude-8.6 and magnitude-8.2 earthquake hit beneath the Indian Ocean, near Indonesia. The earthquakes didn’t happen along a subduction zone, where one tectonic plate slides under another. Instead, these quakes originated in a weird place for earthquakes to happen — in the middle of the plate.

Arctique géologique 1/2

by Préat A. & Van Vliet-Lanoë B., 22 mai 2020 in ScienceClimatEnergie


A la grande différence de l’Antarctique, l’Arctique est un océan entouré de plateaux continentaux (Fig. 2). L’océan ou bassin arctique est actuellement constitué par un double bassin, séparé une crête très importante, la ride Lomonosov : le sous-bassin canadien à croûte continentale amincie (3 600 m)  et le sous-bassin eurasiatique à croûte océanique mince, de loin le plus profond (5000 m entre la crête Lomonosov et la ride océanique active de Gakkel). Il est entouré comme le long de l’Atlantique Nord par une plateforme continentale ennoyée, constituée de croûte continentale.  Le bassin arctique  d’abord marin et connecté au Proto-Atlantique au début du Jurassique (voir plus loin), est isolé depuis le Jurassique moyen et essentiellement de nature lacustre, modifiant le régime thermique océanique, amenant un contexte voisin du Glaciaire au Crétacé inférieur (au Valanginien in Dromart et al. 2003 ; Korte et al. 2015 ; Piskarev et al. 2018). Il ne se ré-ouvrira sur le bassin atlantique qu’à partir de l’Eocène, via l’ouverture du détroit de Fram. D’autre part le pôle  magnétique terrestre (Nord) est resté sur le bassin arctique depuis le début du Jurassique, donc en position de déficit énergétique lié à l’obliquité de l’orbite terrestre.

Fig. 2  Image Gebco Arctique : L’océan ou bassin arctique est actuellement constitué par un double bassin, séparé une crête très importante, la ride Lomonossov (voir texte).

Are We Seeing a New Ocean Starting to Form in Africa?

by Klemetti, E., May 8, 2020 in EOS


Although shallow magma storage at Erta Ale volcano hints at a rift-to-ridge transition, the tectonic future of the Afar region is far from certain.

Standing next to a lava lake at the summit of a massive volcano, Christopher Moore, a Ph.D. candidate at the School of Earth and Environment at the University of Leeds in the United Kingdom, could see the red haze of lava flows a few kilometers away. This might seem like a rare sight, but at Ethiopia’s Erta Ale, it’s business as usual.

Are such behaviors the first signs of a tectonic transition? This question is part of what Moore has been studying at Erta Ale. The entire Afar region in eastern Africa finds itself in the middle of changes that could split the continent, forming a new ocean basin. The magmatism at Erta Ale might be offering signs of this switch by mimicking the characteristics of a mid-ocean ridge.

Satellite image of eastern Africa, with the Red Sea and the Gulf of Aden to the east
The East African Rift valley, the Red Sea, and the Gulf of Aden are clearly visible in this Landsat 8 image, taken on 8 November 2019. Credit: NASA/Erik Klemetti

However, there isn’t agreement about how close the Afar region is to this tectonic transition. The geophysical characteristics of magma storage at Erta Ale could point to the region’s conversion to an incipient oceanic spreading center, but the petrology of the erupting lava might be telling us that we aren’t there yet.

L’Antarctique géologique (2/2)

by A. Préat, 1 mai 2020 in ScienceClimatEnergie


Cet article fait suite aux trois récents articles publiés par le Prof. Maurin sur SCE (1/3, 2/3,  3/3), et traite de l’évolution géologique de la plaque Antarctica.
Voir également L’Antarctique géologique (1/2).

3/ Situation récente à l’échelle géologique

3.1. Isolation de la plaque Antarctique

Nous arrivons ainsi à la situation actuelle avec l’Arctique et l’Antarctique, situation décrite dans les parties 1 à 3 des articles de M. Maurin (parties 1/3, 2/3 et 3/3). D’où proviennent les glaciations actuelles ? Pour les comprendre il faut remonter au début de l’ère cénozoïque en considérant l’Antarctique qui était en position polaire (Scotese, 2001).

La plaque antarctique, partie intégrante de l’ensemble des continents formant le Gondwana est entourée dès le Jurassique (Figs. 7 et 12, inL’Antarctique géologique 1/2) de rides médio-océaniques (excepté la péninsule antarctique qui provient d’une limite de plaque convergente active avec failles transformantes séparant la plaque Antarctique et la plaque Scotia). En conséquence, la plaque Antarctique est actuellement en expansion par rapport aux plaques adjacentes, et fut particulièrement stable et isolée par rapport aux événements tectoniques du Mésozoïque et du Cénozoïque (ici).

Dans ce contexte, et en remontant le temps, il faut noter l’individualisation, dès l’Ordovicien, de la péninsule antarctique avec des montagnes de plus de 3200 m d’altitude constituant aujourd’hui la région la plus au nord de l’Antarctique occidental et s’étendant au-delà du cercle polaire. Cette chaîne de montagnes prolonge les Andes de l’Amérique du Sud dans la continuité d’une dorsale sous-marine caractérisée par un gradient géothermique élevé (voir plus loin). Ainsi on voit que l’Antarctique, depuis longtemps et encore aujourd’hui, participe à un jeu de tectonique des plaques encore active avec des effets locaux (notamment variations du  gradient géothermique).Ce gradient géothermique est un élément important à prendre en considération dans la dynamique glaciaire car il favorise la fonte et ensuite le glissement des glaces.

Notons que Arctowski (in Fogg 1992) avait déjà suggéré en 1901 que les Andes étaient présentes dans la pointe nord de la péninsule antarctique (Graham Land) .

3.2. Englacement de la plaque Antarctique

Fig. 16 : Image des fonds marins d’une chaîne de 800 km de long de plusieurs volcans actifs de 1000 m de haut situés à proximité de la partie nord du continent antarctique. D’après Kamis, 2016.

L’Antarctique géologique (1/2)

by A. Préat, 24 avril 2020 in ScienceClimatEnergie


Cet article traite de l’évolution géologique de la plaque Antarctica, et fait suite aux trois récents articles publiés dans SCE par le Prof. Maurin sur la cryosphère actuelle (1/3, 2/3,  3/3).

1/ Les glaces fascinent …

Les glaces fascinent depuis longtemps les climatologues qui y voient un monde à part, aujourd’hui elles sont suivies ‘à la loupe’ car elles témoigneraient en tout ou en partie du processus de réchauffement actuel. Elles sont l’objet d’une attention médiatique constante. Pourtant elles furent souvent absentes de la Planète, elles apparurent plusieurs fois et disparurent autant de fois au cours de l’histoire géologique, le plus souvent suivant des modalités différentes à l’échelle temporelle et spatiale.

Il n’est pas possible ici de retracer la longue histoire des glaces qui commence au Précambrien, au moins à la transition Archéen et Protérozoïque (avec la glaciation huronienne, il y a environ 2,4 Ga, pour l’échelle détaillée des temps géologiques voir ici, et ci-dessous (Fig. 1) pour une version simplifiée) et se poursuit avec des aléas divers avec un recouvrement des glaces sur l’ensemble de la Planète à la fin du Néoprotérozoïque, donc y compris dans la zone équatoriale, donnant lieu au fameux ‘Snowball Earth’ ou hypothèse de la Terre boule de neige ou encore ‘Terre gelée’ (glaciation marinoenne qui a fait suite à la -ou les ? glaciation(s) sturtienne(s)- il y a 635 Ma. Ensuite viendra la glaciation Gaskiers vers 580 Ma, c’est-à-dire vers la fin du Précambrien. Cet épisode marinoen d’englacement généralisé perdura plus d’une dizaine de millions d’années avec des calottes de glace sur l’équateur (ici) et est à l’origine du nom de l’avant-dernière période du Précambrien, à savoir le Cryogénien (partie supérieure du Protérozoïque entre 850 Ma et 635 Ma, cf. Fig. 1). Entre ces deux grandes glaciations précambriennes (celles de l’huronien et du marinoen), soit sur un peu plus de 1,5 Ga  aucune autre glaciation n’a encore? été rapportée, ce qui supposerait que pendant cet intervalle de temps le climat s’est maintenu dans des conditions plutôt chaudes, avec une régulation thermique ‘sans faille’ (Ramstein, 2015). Notons également pour être complet la présence de glaciers locaux à 2,9 Ga dans l’Archéen d’Afrique du Sud (glaciation ‘pongolienne’) (ici).

Lunar Recession and the Age of the Earth: How Uniformitarianism Works

by D. Middleton, March 24, 2020 in WUWT


One of the things I love about writing for Watts Up With That, is the fact that reader comments often inspire me to research and write subsequent posts. In my recent post about the origins of the Moon, one commentator suggested that the rate of lunar recession (tidal acceleration) indicated that the Earth was much younger than 4.5 billion years old and/or somehow disproved the geological Principle of Uniformitarianism. I didn’t give much thought to my reply. I simply calculated the distance from the Earth to the Moon 1 billion and 4.5 billion years ago. The Moon is currently receding (moving away) from the Earth at a rate of about 3.8 cm/yr. This has been directly measured with lasers.

At 3.8 cm/yr, the Moon would have been 215,288 miles away from Earth a billion years ago. It is currently an average of 238,900 miles away. At 3.8 cm/yr, it still would have been 132,646 miles away 4.5 BY.

If the Moon did did originate from a collision with Earth, it would have been a lot closer to Earth 4.5 BY than 100,000 miles.

How nodules stay on top at the bottom of the sea

by Geological Society of America, January 13, 2020 in ScienceDaily


Rare metallic elements found in clumps on the deep-ocean floor mysteriously remain uncovered despite the shifting sands and sediment many leagues under the sea. Scientists now think they know why, and it could have important implications for mining these metals while preserving the strange fauna at the bottom of the ocean.

The growth of these deep-sea nodules — metallic lumps of manganese, iron, and other metals found in all the major ocean basins — is one of the slowest known geological processes. These ringed concretions, which are potential sources of rare-earth and other critical elements, grow on average just 10 to 20 millimeters every million years. Yet in one of earth science’s most enduring mysteries, they somehow manage to avoid being buried by sediment despite their locations in areas where clay accumulates at least 100 times faster than the nodules grow.

Understanding how these agglomerations of metals remain on the open sea floor could help geoscientists provide advice on accessing them for industrial use. A new study published this month in Geology will help scientists understand this process better.

“It is important that any mining of these resources is done in a way that preserves the fragile deep-sea environments in which they are found,” said lead author Adriana Dutkiewicz, an ARC Future Fellow in the School of Geosciences at The University of Sydney.

Rare-earth and other critical elements are essential for the development of technologies needed for low-carbon economies. They will play an increasingly important role for next-generation solar cells, efficient wind turbines, and rechargeable batteries that will power the renewables revolution.

Big volcanic bump unlike anything seen before found on the moon

by R.G. Andrews, December 13, 2019 in NationalGeography


Scientists scouring the lunar surface for clues to past impact rates found a bonus feature that has geologists “thoroughly confused.”

Sometime after the solar system formed 4.6 billion years ago, a projectile slammed into Earth’s youthful moon and formed the 620-mile-wide basin known as the Crisium basin. No one knows exactly when this impact happened, but for decades scientists have been trying to solve the puzzle as part of a larger debate over whether the moon and, by proxy, Earth endured a period of frenzied meteor bombardment in their early histories.

Now, scientists scouring the region say they’ve spotted a crater within the basin that appears to contain pristine impact melt, a type of volcanic rock that can act like a definitive geologic clock. If future astronauts or a robot could obtain a sample and tease out its age, that may help reveal what was happening on Earth during the primordial period when life first emerged on our planet.

And, as an added bonus, the discovery comes with an intriguing mystery: The basin also holds a geologic blister the size of Washington, D.C., that’s unlike anything else seen in the solar system. As the team reports in an upcoming paper in the Journal of Geophysical Research: Planets, this volcanic lump appears to have been inflated and cracked by peculiar underground magmatic activity that the researchers can’t currently explain.

“I’m thoroughly confused by it,” says Clive Neal, an expert in lunar geology at the University of Notre Dame who was not involved with the new research.

 

Renowned German Geologist Shocks Audience: “Climate Change Totally Exaggerated”…”Warming Least Of Our Problems” By P Gosselin on 12. Oct

par P. Gosselin, October 12, 2019 in NoTricksZone


It’s unusual to see rationality over climate change in the German media, but sometimes it manages to get through.

In April this year I missed an important podcast interview with one of the world’s most prominent Sahara Desert researchers, geologist Dr. Stefan Kröpelin, by the Düsseldorf-based German daily, Rheinische Post.

Image: University of Cologne

The two RP hosts conducting the interview seemed to expect Dr. Kröpelin would tell the audience how dire the consequences of man-made global warming are on the Sahara Desert and planet overall.

They didn’t get what they bargained for.

Warming does not lead to desertification

Instead, in the interview, Dr. Kröpelin rejected in very clear terms man’s major climatic impact and that global warming is only negative.

Kröpelin told listeners that history is very clear: When the globe is cold, the deserts expand. And when the globe is warm, deserts become greener and far more fruitful.

Kröpelin is a leading expert

Kröpelin has been studying the Sahara for over 40 years, spending weeks and months each year on site gathering data a reconstructing past climates. Naturedescribed Kröpelin as “one of the most devoted Sahara explorers of our time.”

At about 9 minutes into the interview, he explains how the Sahara was massive in size during the last glacial period, and that about ten thousand years ago it greened up once temperatures shot up early in the Holocene.

When asked (10:15) if he worries that things in the Sahara “will get much worse” due to climate change, Kröpelin tells the host and audience: “First, that is a statement I 100% reject”, adding that localized desertification has more to do with the population growth at the edges of the desert and that the people who live there are cutting down trees and extracting water from the ground.

Rising precipitation, shrinking desert

Eocene Climatic Optima: Another Clean Kill of Carbon Dioxide-Driven Climate Change Hypothesis?

by David Middleton, September 30, 2019 in WUWT


Key points

  1. The Eocene was, on average, 4–15 °C warmer than today.
  2. Atmospheric CO2 was very likely in the 450-600 ppm range.
  3. Modern climate models would require 4,500 ppm CO2 to simulate the Eocene temperature range;
  4. And/or a climate sensitivity of 4-8 °C per doubling;
  5. And/or “that other climate forcings were stronger than previously assumed”.

They totally missed the most obvious reason why just about every effort to gin up a paleo example of CO2-driven climate change falls apart: Atmospheric CO2 is not a primary driver of climate change over geologic time. This wouldn’t mean that it isn’t a greenhouse gas or that it has no effect on temperature. It would simply mean that it was a relatively minor climate driver, like volcanic eruptions.

At some point over the past 30 years or so, the assumption that CO2 drives modern climate change has become a paradigm. And I think we have seen a rare failure in the application of the geologic principle of Uniformitarianism.

Uniformitarianism is often incorrectly cited as the reason geologists were slow to accept plate tectonics, the impact theory of the K-Pg extinction and why the hypotheses for a Younger Dryas impact and abiotic oil are generally unaccepted. However, Uniformitarianism may be why a CO2-driven climate paradigm appears to have come into wide acceptance, at least in academia.

Figure 3a. Marine pCO2 (foram boron δ11B, alkenone δ13C), atmospheric CO2 from plant stomata (green and yellow diamonds with red outlines), Mauna Loa instrumental CO2 (thick red line) and Cenozoic temperature change from benthic foram δ18O (light gray line).

 

Le Précambrien : les bactéries, la tectonique des plaques et l’oxygène (2/2)

by Alain Préat, 25 septembre 2019 in Science-Climat-Energie


Résumé : L’oxygène n’est pas apparu aussi brutalement qu’on le pensait sur notre planète (nb: première partie 1/2, ici).

Malgré un apport en oxygène lié aux cyanobactéries dès l’Archéen, ce ne se sont pas ces microorganismes qui sont à la base de la première grande ‘révolution’ de l’oxygène qui a eu lieu à la limite Archéen/Paléoprotérozoïque (il y a 2,5 milliards d’années) dans l’atmosphère, lors du Grand Evénement d’Oxydation. Ce sont les processus liés au cycle de la tectonique des plaques (activité mantellique et périodes intenses d’érosion/altération) qui ont contribué de manière déterminante à l’augmentation de la concentration de l’oxygène atmosphérique vers 2,5 milliards d’années. Les deux principaux processus responsables de cette augmentation sont liés à l’enfouissement de la matière organique et de la pyrite (= FeS2). L’altération des séries riches en ces deux composants conditionnera ensuite pendant près d’un milliard d’années la composition chimique des océans en oxygène, soufre et fer. Au cours du temps, l’oxygène proviendra de l’activité des cyanobactéries et l’atmosphère réductrice du début de l’Archéen sera remplacée par une atmosphère oxydante à la fin du Précambrien.

Abstract : Oxygen did not appear as abruptly as we thought on our planet.

Despite an oxygen supply related to cyanobacteria, since the Archean, it is not these microorganisms that are at the base of the first great oxygen revolution that took place at the Archean/Paleoproterozoic boundary (2.5 billion years) in the atmosphere during the Great Oxidation Event. Two processes related to the cycle of plate tectonics (mantle activity and intense periods of erosion/weathering) were mostly involved in the increase of the of atmospheric oxygen concentration 2.5 billion years ago. These two main processes are related to the burial of organic matter and those of pyrite(= FeS2) The alteration of series with high contents of the two elements will then condition for nearly a billion of years the oxygen, sulfur and iron chemical composition of the oceans. The oxygen will finally come from the activity of cyanobacteria and the early Archean reducing atmosphere will be replaced by an oxidizing atmosphere at the end of the Precambrian.

Le Précambrien : les bactéries, la tectonique des plaques et l’oxygène (1/2)

by Alain Préat, 20 septembre 2019, in ScienceClimatEnergie


Résumé : L’oxygène n’est pas apparu aussi brutalement qu’on le pensait sur notre planète.

Malgré un apport en oxygène lié aux cyanobactéries dès l’Archéen, ce ne se sont pas ces micro-organismes qui sont à la base de la première grande ‘révolution’ de l’oxygène qui a eu lieu à la limite Archéen/Paléoprotérozoïque (il y a 2,5 milliards d’années) dans l’atmosphère, lors du Grand Evénement d’Oxydation. Ce sont les processus liés au cycle de la tectonique des plaques (activité mantellique et périodes intenses d’érosion/altération) qui ont contribué de manière déterminante à l’augmentation de la concentration de l’oxygène atmosphérique vers 2,5 milliards d’années. Les deux principaux processus responsables de cette augmentation sont liés à l’enfouissement de la matière organique et de la pyrite (= FeS2). L’altération des séries riches en ces deux composants conditionnera ensuite pendant près d’un milliard d’années la composition chimique des océans en oxygène, soufre et fer. Au cours du temps, l’oxygène proviendra de l’activité des cyanobactéries et l’atmosphère réductrice du début de l’Archéen sera remplacée par une atmosphère oxydante à la fin du Précambrien.

Abstract : Oxygen did not appear as abruptly as we thought on our planet.

Despite an oxygen supply related to cyanobacteria, since the Archean, it is not these microorganisms that are at the base of the first great oxygen revolution that took place at the Archean/Paleoproterozoic boundary (2.5 billion years) in the atmosphere during the Great Oxidation Event. Two processes related to the cycle of plate tectonics (mantle activity and intense periods of erosion/weathering) were mostly involved in the increase of the of atmospheric oxygen concentration 2.5 billion years ago. These two main processes are related to the burial of organic matter and those of pyrite (= FeS2). The alteration of series with high contents of the two elements will then condition for nearly a billion of years the oxygen, sulfur and iron chemical composition of the oceans. The oxygen will finally come from the activity of cyanobacteria and the early Archean reducing atmosphere will be replaced by an oxidizing atmosphere at the end of the Precambrian.

OLYMPUS DIGITAL CAMERA

Figure 2a( en haut). Stromatolithe columnaire, Néoprotérozoïque, (Formation SC1c in Préat et al. 2018), Bassin du Niari, République du Congo (Brazzaville), photo A. Préat, 2016.

Oxygen depletion in ancient oceans caused major mass extinction

by Florida State University, August. 30, 2019 in ScienceDaily/fromGeology


Late in the prehistoric Silurian Period, around 420 million years ago, a devastating mass extinction event wiped 23 percent of all marine animals from the face of the planet.

For years, scientists struggled to connect a mechanism to this mass extinction, one of the 10 most dramatic ever recorded in Earth’s history. Now, researchers from Florida State University have confirmed that this event, referred to by scientists as the Lau/Kozlowskii extinction, was triggered by an all-too-familiar culprit: rapid and widespread depletion of oxygen in the global oceans.

‘MASSIVE POOL’ OF METHANE HIDDEN DEEP BENEATH EARTH’S SURFACE DISCOVERED BY SCIENTISTS

by Hannay Osborne, 21 August 2019 in Newsweek from PNAS


A huge source of methane has been discovered deep beneath the surface of Earth, sitting between the upper mantle and lower oceanic crust. The discovery is important as it could provide an insight into the hydrothermal vents that may have helped the planet’s first life emerge. Researchers also argue it could be a source of hydrogen and methane on other planets in the solar system—”even those where liquid water is no longer present.”

The ‘abiotic’ methane—methane that is not formed with organic matter—was found locked inside rocks. Researchers from the Woods Hole Oceanographic Institution (WHOI), Massachusetts, took 160 samples from hydrothermal sites across the globe, including the Mid-Atlantic Ridge, Guaymas Basin, the East Pacific Rise and the Mid-Cayman Rise. After analyzing them with a laser-based microscope, they found that almost all contained pockets of methane.

In their study, published in the journal PNAS, the team says this could be the biggest source of abiotic methane in the world. This reservoir, they say, could account for more methane than was in Earth’s atmosphere before the onset of the industrial era.

The methane appears to have formed by reactions between trapped water and olivine, a group of rock-forming minerals found in the planet’s subsurface. When seawater moves through the deep ocean crust, it mixes with magma-hot olivine. When the mineral cools, the water is trapped inside and a chemical reaction takes place, leading to the formation of hydrogen and methane.

Traditionally, we think of methane—a potent greenhouse gas—as forming when organic material breaks down. When it is emitted into the atmosphere, it has a warming effect far greater than carbon dioxide, although it is far shorter-lived than the latter, disappearing after about a decade.

However, methane is also known to exist on the seafloor. It is released through deep-sea vents—geothermally heated fissures on Earth’s crust. In 2016, scientists with the Ocean Exploration Trust discovered over 500 methane spewing vents off the west coast of the U.S.

However, the source of the seafloor methane has remained something of a mystery. “Identifying an abiotic source of deep-sea methane has been a problem that we’ve been wrestling with for many years,” study author Jeffrey Seewald, a senior scientist at WHOI, said in a statement.

Lead author Frieder Klein added: “We were totally surprised to find this massive pool of abiotic methane in the oceanic crust and mantle. Here’s a source of chemical energy that’s being created by geology.”

Fire from Ice: A Case Study of Methane Hydrates in the Eastern Mediterranean

by E. Zogopoulos, August 13, 2019 in EnergyIndustryeView


Methane hydrates is a source of methane gas which is found in crystalline formation that look like ice and can be found in permafrost regions or under the sea in outer continental margins.

We are living in times of fundamental changes in the energy landscape, driven by uncertainty, unstable energy prices, disruptive technologies, geopolitical gambits and subsequent attempts for regulatory interventions. While governments and corporations are trying to adjust to the new landscape and guess the name of the game, they need reliable sources of power to make predictions and critical strategic decisions.

Historical & geopolitical context

The era of hydrocarbons does not seem to be over, but there might be some indications in the horizon. We like it or not, they will still account for the vast majority of the global energy mix by 2050, despite significant breakthroughs in renewables. Many new players come in the energy market with the elusive promise of additional and cheaper resources and the will to disrupt the game – and eventually make money out of it.

Furthermore, the growing tension between public policy and private initiatives has been boiling and has been more than just an understatement for decades. The under-investment that we observe now due to lower prices and risks could become chronic and the global output of energy resources could lead to secure supply deficit.

Gas is believed to gradually replace coal, which is a source of distress for some existing players. The world is facing a proliferation of Liquified Natural Gas (LNG) supplies that are already impacting gas markets and competing with pipeline gas. Some of the largest and most significant consuming nations are contemplating reform or unbundling, which could mean some take or pay contracts become stranded and an increasing oil price is likely to reinforce the price arbitrage between long-term and spot pricing.

There is undeniably a constant call for further investments in renewables, but lower oil, gas and coal prices and increased efficiency (or very effective lobbying) might slow this down. The global players do take into consideration the call for renewables (like solar and wind energy), either for publicity purposes or even because they do believe that this could be the future.

 

Location of sampled and inferred methane hydrate occurrences in oceanic sediment of outer continental margins and permafrost regions. Most of the recovered methane hydrate samples have been obtained during deep coring projects or shallow seabed coring operations. Most of the inferred methane hydrate occurrences are sites at which bottom simulating reflectors (BSRs) have been observed on available seismic profiles. The methane hydrate research drilling projects and expeditions reviewed in this report have also been highlighted on this map. (Map courtesy of Timothy S. Collett, USGS)

Anthropocene: “it will be the rocks that have the final say” about this fake word.

by David Middleton, August 7, 2019 in WUWT


The fake geologic epoch known as the “Anthropocene” just won’t die… It’s like a zombie from a bad science fiction movie.

Despite being populated with activists like Naomi Oreskes, it has taken the AWG ten years to vote on what their conclusion will be and to start looking for evidence to support their conclusion… And the vote wasn’t unanimous.

Here’s where the Anthropocene dies…

 

Figure 4 from Finney & Edwards.  “Workflow for approval and ratification of a Global Standard Stratotype Section and Point (GSSP) proposal. Extensive discussion and evaluation occurs at the level of the working group, subcommission, and International Commission on Stratigraphy (ICS) Bureau. If approved at these successive levels, a proposal is forwarded to the International Union of Geological Sciences (IUGS) for ratification. This process is also followed for other ICS decisions on standardization, such as approval of names of formal units, of revisions to the units, and to revision or replacement of GSSPs.”