Archives par mot-clé : Iron

ESO telescope observes exoplanet where it rains iron

by C. Rotter, March 13, 2020 in WUWT


Researchers using ESO’s Very Large Telescope (VLT) have observed an extreme planet where they suspect it rains iron. The ultra-hot giant exoplanet has a day side where temperatures climb above 2400 degrees Celsius, high enough to vaporise metals. Strong winds carry iron vapour to the cooler night side where it condenses into iron droplets.

“One could say that this planet gets rainy in the evening, except it rains iron,” says David Ehrenreich, a professor at the University of Geneva in Switzerland. He led a study, published today in the journal Nature, of this exotic exoplanet. Known as WASP-76b, it is located some 640 light-years away in the constellation of Pisces.

This strange phenomenon happens because the ‘iron rain’ planet only ever shows one face, its day side, to its parent star, its cooler night side remaining in perpetual darkness. Like the Moon on its orbit around the Earth, WASP-76b is ‘tidally locked‘: it takes as long to rotate around its axis as it does to go around the star.

Europium points to new suspect in continental mystery

by Rice University, May 16, 2018 in ScienceDaily


Clues from some unusual Arizona rocks pointed Rice University scientists toward a discovery — a subtle chemical signature in rocks the world over — that could answer a long-standing mystery: What stole the iron from Earth’s continents?

The find has weighty implications. If the iron content of continental rocks was a bit greater, as it is in the rocks beneath Earth’s oceans, for example, our atmosphere might look more like that of Mars, a planet so littered with rusty, oxidized rocks that it appears red even from Earth.

In a new paper available online in Science Advances, Rice petrologists Cin-Ty Lee, Ming Tang, Monica Erdman and Graham Eldridge make a case that garnet steals the most iron from continents. The hypothesis flies in the face of 40-plus years of geophysical thinking, and Tang, a postdoctoral fellow, and Lee, professor and chair of the Department of Earth, Environmental and Planetary Sciences at Rice, said they expect a healthy dose of skepticism from peers.

“The standard view … (…)

The onset of widespread marine red beds and the evolution of ferruginous oceans

by Haijun Song et al., August 2017, in Nature


Banded iron formations were a prevalent feature of marine sedimentation ~3.8–1.8 billion years ago and they provide key evidence for ferruginous oceans. The disappearance of banded iron formations at ~1.8 billion years ago was traditionally taken as evidence for the demise of ferruginous oceans, but recent geochemical studies show that ferruginous conditions persisted throughout the later Precambrian, and were even a feature of Phanerozoic ocean anoxic events.