Les scientifiques en déduisent que le réchauffement global actuel pourrait potentiellement être “sans précédent” sur les 100 derniers millions d’années. L’étude de ces géochimistes, publiée dans Nature Communications, constitue une sorte de pavé dans la mare des paléoclimatologues qui utilisent depuis les années 1950 ce “paléothermomètre” aidant à bâtir les modèles actuels sur le réchauffement climatique
September Sea Surface Temperatures (SSTs) are now available, and we see downward spikes in ocean temps everywhere, led by sharp decreases in the Tropics and SH, reversing the bump upward last month. The Tropical cooling in particular factors into forecasters favoring an unusually late La Nina appearance in coming months.
Paper Reviewed: McCulloch, M.T., D’Olivo, J.P., Falter, J., Holcomb, M. and Trotter, J.A. 2017. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nature Communications8: 15686, DOI:10.1038/ncomms15686
(…) The implications of the above findings are enormous, for they reveal that “pHcf upregulation occurs largely independent of changes in seawater carbonate chemistry, and hence ocean acidification,” demonstrating “the ability of the coral to ‘control’ what is arguably one of its most fundamental physiological processes, the growth of its skeleton within which it lives.
by Anastasios Tsonis, September 15, 2017 in GWPF Report26 (.pdf)
This report describes this phenomenon and brings it into a modern global con- text. But the story is more than simply one of some old South American geophysical phenomenology seen from a global perspective; it is tied to an extraordinary story about new scienti c thinking, arising at the end of the 20th century, concerning the nature of change itself.
Banded iron formations were a prevalent feature of marine sedimentation ~3.8–1.8 billion years ago and they provide key evidence for ferruginous oceans. The disappearance of banded iron formations at ~1.8 billion years ago was traditionally taken as evidence for the demise of ferruginous oceans, but recent geochemical studies show that ferruginous conditions persisted throughout the later Precambrian, and were even a feature of Phanerozoic ocean anoxic events.
In this study we investigate statistical link between external climate forcings and modes of ocean variability on inter-annual (3-year) to centennial (100-year) timescales using de-trended semi-partial-cross-correlation analysis technique. To investigate this link we employ observations (AD 1854–1999), climate proxies (AD 1600–1999), and coupled Atmosphere-Ocean-Chemistry Climate Model simulations with SOCOL-MPIOM (AD 1600–1999). We find robust statistical evidence that Atlantic multi-decadal oscillation (AMO) has intrinsic positive correlation with solar activity in all datasets employed. The strength of the relationship between AMO and solar activity is modulated by volcanic eruptions and complex interaction among modes of ocean variability.
Five million years ago, average temperatures were higher than they are now. During the Pliocene, the era just before the period of the Quaternary Ice Ages, ‘glacials’ did not yet exist because temperatures were too high. As cooling of the deep seas continued, temperatures became that low that large surfaces of the Northern Hemisphere became covered with snow. The earth’s albedo grew fast and large ice sheets started to develop
An article just published in the Proceedings of the Royal Society B describes two remarkably different hydrothermal vent fields discovered in the southern Gulf of California. Despite being relatively close together, these vents host very different animal communities. This finding contradicts a common scientific assumption that neighboring vents will share similar animal communities. Instead, the new paper suggests that local geology and the chemistry of the vent fluids are important factors affecting vent communities
A new study shows that difference in water temperature between the Pacific and the Atlantic oceans together with global warming impact the risk of drought and wildfire in southwestern North America.
The Tethys Sea couldn’t have been a better place for petroleum source rock deposition even if it had been designed for such a purpose. The “Tethyan realm” encompassed much of the Jurassic and Cretaceous periods…
We show that variations in ocean temperature in the high latitude North Atlantic and Nordic Seas are reflected in the climate of northwestern Europe and in winter Arctic sea ice extent. Statistical regression models show that a significant part of northern climate variability thus can be skillfully predicted up to a decade in advance based on the state of the ocean.Particularly, we predict that Norwegian air temperature will decrease over the coming years, although staying above the long-term (1981–2010) average. Winter Arctic sea ice extent will remain low but with a general increase towards 2020.
The basic physics behind CO2 warming the oceans, and therefore the atmosphere simply don’t exist. The only defined mechanism by which CO2 can affect climate change is by “thermalizing” long-wave infrared radiation between 13 and 18-microns. In reality, there is another one, radiation, but that carries heat away from the earth and results in atmospheric cooling.
Plastics in the marine environment have become a major concern because of their persistence at sea, and adverse consequences to marine life and potentially human health. Implementing mitigation strategies requires an understanding and quantification of marine plastic sources, taking spatial and temporal variability into account. Here we present a global model of plastic inputs from rivers into oceans based on waste management, population density and hydrological information.
High latitude ocean gateway changes are thought to play a key role in Cenozoic climate evolution. However, the underlying ocean dynamics are poorly understood. Here we use a fully coupled atmosphere-ocean model to investigate the effect of ocean gateway formation that is associated with the subsidence of the Greenland–Scotland Ridge. We find a threshold in sill depth (∼50 m) that is linked to the influence of wind mixing.
Arctic amplification is a robust feature of climate response to global warming, with large impacts on ecosystems and societies. A long-standing mystery is that a pronounced Arctic warming occurred during the early 20th century when the rate of interdecadal change in radiative forcing was much weaker than at present. Here, using observations and model experiments, we show that the combined effect of internally generated Pacific and Atlantic interdecadal variabilities intensified the Arctic land warming in the early 20th century.
Chronicling Earth’s past temperature swings is a basic part of understanding climate change. One of the best records of past ocean temperatures can be found in the shells of marine creatures called foraminifera
Here we review proxy records of intermediate water temperatures from sediment cores in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record.
These records suggests that intermediate waters were 1.5–2 °C warmer during the Holocene Thermal Maximum than in the last century.
Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age.
Continued weakening of the upper-ocean overturning is likely to strengthen the CO2 sink in the near future by trapping natural CO2 in the deep ocean, but ultimately may limit oceanic uptake of anthropogenic CO2.
The natural increase in solar luminosity — a very slow process unrelated to current climate warming — will cause the Earth’s temperatures to rise over the next few hundred million years. This will result in the complete evaporation of the oceans. The first three-dimensional climate model able to simulate the phenomenon predicts that liquid water will disappear on Earth in approximately one billion years, extending previous estimates by several hundred million years.
Jérémy Leconte, Francois Forget, Benjamin Charnay, Robin Wordsworth, Alizée Pottier. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature, 2013; 504 (7479): 268 DOI: 10.1038/nature12827
Dans le cadre du projet européen EMBRACE, une équipe d’océanographes a réexaminé ces 40 projections climatiques en se focalisant sur un point névralgique au nord-ouest de l’Atlantique Nord : la mer du Labrador. Cette mer est le siège d’un phénomène de convection, qui nourrit à plus grande échelle la circulation océanique de retournement. Ses eaux de surface se refroidissent fortement en hiver, deviennent plus denses que les eaux de profondeur et plongent vers le fond. La chaleur des eaux profondes est transférée vers la surface et empêche la formation de banquise
Carbon dioxide, we are told, traps heat that has been irradiated by the oceans, and this warms the oceans and melts the polar ice caps. While this seems a plausible proposition at first glance, when one actually examines it closely a major flaw emerges.
…
La géologie, une science plus que passionnante … et diverse