The Holocene CO2 Dilemma

by R. Hannon, June 2023, in WUWT


This post evaluates the relationship of global CO2 with regional temperature trends during the Holocene interglacial period. Ice core records show that CO2 is strongly coupled with local Antarctic temperature and slightly lags temperature over the past 800,000 years (Luthi, 2008). Whereas the emphasis has been on CO2 and temperature lags/leads, this study focuses on Holocene millennium trends in different latitude-bounded regions.

The Contrarian Antarctic

The Holocene is fortunate to have hundreds of proxy records analyzed by Marcott, 2013, and more recently Kaufman, 2020, to establish regional and global temperature trends. The Holocene interglacial occurs approximately during the past 11,000 years. In general, global temperature trends from proxy data show a Holocene Climatic Optimum (HCO) around 6000 to 8000 years ago and a subsequent cooling trend, the Neoglacial period, culminating in the Little Ice Age (LIA). The global mean temperature is comprised of regional trends that tend to have a concave down appearance during the Holocene shown in Figure 1a.

The exception is the Antarctic shown in red which has a concave up shape. The Antarctic reached an early Holocene Climatic Optimum between 9000 to 11000 years ago. While global and most regional temperatures were warming, Antarctic cooled to a minimum around 8000 years ago. While global and other regions show progressive cooling during the Neoglacial, the Antarctic was flat and erratic. This contrary Antarctic temperature behavior during the Holocene has also been noted by Andy May here.

Observations

Climate change is routinely claimed to be largely controlled by greenhouse gases, especially CO2. This was concluded, in part, by the strong relationship between CO2 from Antarctic ice core bubbles and local Antarctic temperature trends. While CO2 mimics Antarctic temperatures very well, ninety percent of Earth’s surface temperature trends do not demonstrate a positive correlation to CO2 during the Holocene. Arctic and Northern Hemisphere temperatures become cooler during increasing CO2 levels. Tropical proxy temperatures don’t seem to be influenced by CO2.

Model simulated temperatures which are strongly influenced by CO2 do not accurately history match Holocene global proxy temperatures and tend to largely reflect Antarctic trends. The fact that CO2 correlates well to Holocene temperatures for only the Antarctic, or <10% of our planet’s surface, yet CO2 is considered as the dominant influence on climate change is a scientific dilemma.

Download the bibliography here.