Archives par mot-clé : Volcanism

Hunga Tonga volcano: impact on record warming

by J. Vinos, July 9, 2024 in WUWT

1. Off-scale warming

Since the planet has been warming for 200 years, and our global records are even more recent, every few years a new warmest year in history is recorded. Despite all the publicity given each time it happens, it would really be news if it didn’t happen, as it did between 1998 and 2014, a period popularly known as the pause.

Figure 1. Berkeley Earth temperature anomaly

Since 1980, 13 years have broken the temperature record. So, what is so special about the 2023 record and the expected 2024 record? For starters, 2023 broke the record by the largest margin in records, 0.17°C. This may not sound like much, but if all records were by this margin, we would go from +1.5°C to +2°C in just 10 years, and reach +3°C 20 years later.

….

Iceland, the island of danger

by B. Van Vliet-Lanoë & A. Préat, Feb 8, 2024 in ScienceClimatEnergie


Main topic : Iceland attracts tourists as much as it does scientists tasked with forecastingthe significant natural hazards inherent in its unique geological context. There’s not aweek goes by when Iceland doesn’t feature prominently in the media, and even more so today with the evacuation of the population on 11 November following the awakening ofthe volcano at Grindavik, 40km southwest of Reykjavik.

The current eruption has been forecast since 21 July 2023, and was activated in December and on 14 January 2024. This is neither the first nor the last time that volcanism has made or will make news. Grindavik isnot the only eruption underway: between 40 and 50 of the 1,330 known volcanoes on Earth are erupting at any one time. This eruptive activity is accompanied by ‘disastrous’ effects such as frequent earthquakes, sulphur and ash aerosols, sub-glacial melting of the ice caps, glacio-isostatic discharges, and uplift… Yes, Iceland is under close survey… because it is located on an active hot spot.

Laki or ‘Lakagigar’ is a volcanic system in the graben across Iceland. Colossal fissure erupti

Mount Pinatubo eruption caused the major East China flood in 1991

by C. Xing & F. Liu, Jan 2023 in InnovativeGeoscience


The devastating flood of 2020 along the Yangtze River serves as a painful reminder of the 1991 East China’s largest flood. The latter event profoundly impacted the Yangtze-Huaihe River basins (YHRBs), causing extensive damage to both human lives and property1. The flood engulfed numerous villages and cities across seven provinces in East China, affecting over 15,000,000 hectares of farmland and approximately 100 million people. In response, millions of individuals in Anhui and Jiangsu provinces were forced to evacuate, with some seeking refuge on the banks of the Huaihe River. Gaining a comprehensive understanding of the contributing factors to this historically significant flood will enhance our ability to predict the East Asian summer monsoon and mitigate related climate disasters. Over the past three decades, this pursuit has been a persistent challenge1,2,3.

The 1991 East China flood was attributed to prominent intraseasonal oscillations, as evidenced by three episodes of heavy rain occurring from mid-May to mid-July over the YHRBs2, primarily linked to the persistent Meiyu front during early July1. The stable western Pacific subtropical high (WPSH), which plays a crucial role in influencing the East Asian monsoon by altering the convergence of southeasterly and southwesterly, provided substantial support for the prolonged existence of the Meiyu front in 19911; However, the reason behind the prolonged stability of the WPSH during that specific period remains a mystery.

No internal climate variability modes were reported to be in their most flood-favorable conditions during 1991, and the effect of external forcing on this flood disaster was not taken into consideration at all. Half a month before the flood, the Mount Pinatubo (located at 120.4ºE, 15.1ºN) in Luzon, the Philippines, explosively erupted on June 15th, 1991, which later is known as one of the strongest volcanic eruption in the past century. This eruption released approximately 20 Tg of SO2 into the tropical stratosphere4, which can form stratospheric aerosol that impact the global radiative balance. The stratospheric volcanic aerosol acts as a major forcing on the climate by cooling the global surface and slowing down the water cycle on annual to decadal timescales5. However, it remains unclear whether explosive volcanic eruptions have short-term impacts on the climate, particularly on the intraseasonal timescale.

The MSM Has Memory-Holed Tonga’s Warming Effects On World Temps

by E. Erickson, Aug 14, 2023 in ClimateChangeDispatch


On Jan. 15, 2022, the underwater Hunga Tonga–Hunga Ha’apai volcano in the Pacific exploded. The volcano triggered tsunamis in the South Pacific and sent a massive plume of water vapor into the stratosphere.

Over the past year, scientists have increased the estimates of how much water vapor went into the stratosphere. That water vapor, every scientist agrees, warms the planet. [emphasis, links added]

Originally, scientists estimated 50 million metric tons of water went into the atmosphere.

Now, revised estimates are at 150 million metric tons, which equates to 40 trillion gallons of water injected into the stratosphere.

Over the past year, dozens of scientists have produced papers warning that the summer of 2023 and possibly into the next decade would be abnormally hot.

Scientists suggest the global temperature could increase more than 1.5 degrees Celsius.

In fact, that is exactly what is happening. Up until the summer heat wave, news reports noted the expected increase in temperatures due to the volcano.

But as the heat wave began, as predicted, the volcano and its water vapor disappeared from coverage.

Now, in the progressive spirit of never letting a crisis go to waste, the American and European press corpshave begun a full-court press on climate change.

Instead of the volcano, people, capitalism, and oil companies are to blame for the heat wave.

Active volcano on Venus shows it’s a living planet

by P. Voosen, Mar 15, 2023 in Science


Eruption spotted in 30-year-old data from Magellan mission

Choked by a smog of sulfuric acid and scorched by temperatures hot enough to melt lead, the surface of Venus is sure to be lifeless. For decades, researchers also thought the planet itself was dead, capped by a thick, stagnant lid of crust and unaltered by active rifts or volcanoes. But hints of volcanism have mounted recently, and now comes the best one yet: direct evidence for an eruption. Geologically, at least, Venus is alive.

The discovery comes from NASA’s Magellan spacecraft, which orbited Venus some 30 years ago and used radar to peer through the thick clouds. Images made 8 months apart show a volcano’s circular mouth, or caldera, growing dramatically in a sudden collapse. On Earth, such collapses occur when magma that had supported the caldera vents or drains away, as happened during a 2018 eruption at Hawaii’s Kilauea volcano. “I’m totally tickled, as a geomorphologist, to see this,” says Martha Gilmore, a planetary scientist at Wesleyan University who was not involved in the study.

Witnessing this unrest during the short observation period suggests either Magellan was spectacularly lucky, or, like Earth, Venus has many volcanoes spouting off regularly, says Robert Herrick, a planetary scientist at the University of Alaska, Fairbanks. Herrick, who led the study, says, “We can rule out that it’s a dying planet.”

See also : A volcano on Venus was spotted erupting in decades-old images

Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism

by Jones et al., Jan 2023 in NatureGeoscience


Abtsract

Large-igneous-province volcanic activity during the mid-Cretaceous triggered a global-scale episode of reduced marine oxygen levels known as Oceanic Anoxic Event 2 approximately 94.5 million years ago. It has been hypothesized that this geologically rapid degassing of volcanic carbon dioxide altered seawater carbonate chemistry, affecting marine ecosystems, geochemical cycles and sedimentation. Here we report on two sites drilled by the International Ocean Discovery Program offshore of southwest Australia that exhibit clear evidence for suppressed pelagic carbonate sedimentation in the form of a stratigraphic interval barren of carbonate minerals, recording ocean acidification during the event. We then use the osmium isotopic composition of bulk sediments to directly link this protracted ~600 kyr shoaling of the marine calcite compensation depth to the onset of volcanic activity. This decrease in marine pH was prolonged by biogeochemical feedbacks in highly productive regions where elevated heterotrophic respiration added carbon dioxide to the water column. A compilation of mid-Cretaceous marine stratigraphic records reveals a contemporaneous decrease of sedimentary carbonate content at continental slope sites globally. Thus, we contend that changes in marine carbonate chemistry are a primary ecological stress and important consequence of rapid emission of carbon dioxide during many large-igneous-province eruptions in the geologic past.

An Inconvenient Tree: Is Climate Change Driving Worse Floods

by E. Worrall, Nov 27, 2022 in WUWT


Does evidence of past extreme floods invalidate claims that climate change is making floods worse?

 

Could volcanic activity be a contributor to major floods in Australia? Australia is on the South Western edge of the Ring of Fire. While the Australian mainland is not very volcanically active, there have been some spectacular eruptions in our neighbourhood, such as the infamous Krakatoa eruption in 1883, or the 1815 Tambora Eruption, which is blamed for causing famine in the United States in 1816, “The Year Without a Summer”.

A notable volcanic eruption occurred at the start of 2022 – The Hunga Tonga eruption. JoNova published an intriguing comparison between the volcanic ash distribution from the Hunga Tonga eruption in January 2022, and 2022 rainfall anomalies across Australia. Hunga Tonga was light on sulphates, but the blast threw unprecedented amounts of water into the stratosphere. Where I live, on the Southern edge of the volcanic debris distribution, we’ve had some spectacular sunsets over the last year.

The apparent overlap between rainfall anomalies and volcanic debris could be a coincidence – but the comparison is visually intriguing.

How big was the Tonga eruption?

by M. Sharma & S. Scarr, Jan 21, 2022 in ReutersGraphics


The explosive eruption of the Hunga Tonga-Hunga Ha’apai volcano may be one of the largest recorded in such detail. The blast was visible from space, with images of the massive ash plume going viral over the following days. But just how big was it?

The underwater volcano erupted with a deafening explosion on Jan. 15, triggering deadly tsunamis, covering islands in ash, and knocking out communications for Tonga’s 105,000 people

The event was captured in astonishing detail by satellites including the NOAA GOES-West satellite, shown below.

Iceland eruption may be the start of decades of volcanic activity

by G. Andrews, Aug 4, 2022 in NationalGeographic


Less than a year has passed since lava stopped sputtering from Iceland’s Reykjanes Peninsula following the first major volcanic outburst from this region in almost 800 years. But now the island is once again bleeding molten rock. The start of a new eruption so soon after unrest in 2021 seems to underscore that this once quiescent peninsula has awoken from its long slumber.

“This could herald the start of decades of occasional eruptions,” says Dave McGarvie, a volcanologist at Lancaster University.

The new eruption, which started at 1:18 p.m. local time on August 3, sent scarlet ribbons streaming from the base of a small mountain into the uninhabited Meradalir Valley. Located far from populations, the volcanic burbles likely pose little danger to the public, at least in the near term. And this relative safety allows scientists and tourists alike to marvel at the geologic majesty and get excited for a possible onslaught of new scientific knowledge.

After all, each volcanic eruption here provides a “window into the abyss,” McGarvie says. The 2021 event yielded revelations about the personality of the peninsula’s exuberant eruptions—from their physical behaviors to their quirky chemistries. This new eruption promises even more insights as the nascent volcano forges the world’s youngest land.

It’s still unclear how prolific or lengthy the eruption will be; this information will only come to light with more time and continued monitoring. But this week’s show of fireworks strongly hints the peninsula will become one of the most volcanically active parts of the planet for several generations.

“I am genuinely excited,” McGarvie says.

A volcanic double-bill

Tonga Eruption Blasted Unprecedented Amount of Water Into Stratosphere

by C. Rotter, Aug 3, 2022 in WUWT


….

This looping video shows an umbrella cloud generated by the underwater eruption of the Hunga Tonga-Hunga Ha’apai volcano on Jan. 15, 2022. The GOES-17 satellite captured the series of images that also show crescent-shaped shock waves and lightning strikes.
Credit: NASA Earth Observatory image by Joshua Stevens using GOES imagery courtesy of NOAA and NESDIS

The huge amount of water vapor hurled into the atmosphere, as detected by NASA’s Microwave Limb Sounder, could end up temporarily warming Earth’s surface.

When the Hunga Tonga-Hunga Ha’apai volcano erupted on Jan. 15, it sent a tsunami racing around the world and set off a sonic boom that circled the globe twice. The underwater eruption in the South Pacific Ocean also blasted an enormous plume of water vapor into Earth’s stratosphere – enough to fill more than 58,000 Olympic-size swimming pools. The sheer amount of water vapor could be enough to temporarily affect Earth’s global average temperature.

“We’ve never seen anything like it,” said Luis Millán, an atmospheric scientist at NASA’s Jet Propulsion Laboratory in Southern California. He led a new study examining the amount of water vapor that the Tonga volcano injected into the stratosphere, the layer of the atmosphere between about 8 and 33 miles (12 and 53 kilometers) above Earth’s surface.

2021-2022 Tonga Volcanic Eruption and Record Rainfall in Eastern Australia and New Zealand

by A. Wong & W. Yims, Jul 4, 2022 in The SaltbushClub


Summary

During late 2021, the Hunga Tonga-Hunga Ha’apai submarine volcano erupted creating a new island which erupted sub-aerially on 15th January, 2022 sending a plume 58 km above sea level penetrating the mesosphere. The study of observation records including satellite data has revealed warming of the ocean-surface layer followed by atmospheric cooling caused by the release of geothermal heat and volcanic materials entering the atmosphere respectively. Environmental factors influencing weather include the development of a relatively ‘short’ life-span South Pacific Blob; the transfer of large quantities of water vapour from the ocean into the atmosphere; the low-pressure condition on the ocean surface; the formation of clouds; the reduction of solar radiation caused by volcanic materials in the atmosphere; the strengthening of trade winds; the meandering of jet streams; the development of atmospheric rivers, the additional cooling effect of torrential rainfall, and, the switch to La Niña conditions. The record rainfall in eastern Australia and New Zealand and Tropical Cyclone Dovi occurring in February 2022 were both outcomes of atmospheric cooling following the sub-aerial eruption.

Tonga volcano eruption among the most powerful ever observed, triggering atmospheric gravity waves that reached the edge of space

by University of Bath,  Jun 30, 2022 in ScienceDaily from Nature


The eruption of the Hunga Tonga-Hunga Ha’apai submarine volcano in January 2022 was one of the most explosive volcanic events of the modern era, a new study has confirmed.

Led by researchers from the University of Bath and published today in Nature, the study combines extensive satellite data with ground-level observations to show that the eruption was unique in observed science in both its magnitude and speed, and in the range of the fast-moving gravity and atmospheric waves it created.

Following a series of smaller events beginning in December 2021, Hunga Tonga erupted on 15 January this year, producing a vertical plume that extended more than 50km (30 miles) above the surface of the earth. Heat released from water and hot ash in the plume remained the biggest source of gravity waves on earth for the next 12 hours. The eruption also produced ripple-like gravity waves that satellite observations show extended across the Pacific basin.

The eruption also triggered waves in our atmosphere that reverberated around the planet at least six times and reached close to their theoretical maximum speeds — the fastest ever seen within our atmosphere, at 320m per second or 720 miles per hour.

The fact that a single event dominated such a large region is described by the paper’s authors as unique in the observational record, and one that will help scientists improve future atmospheric weather and climate models.

The NOT melting glacier

by T. Ciccone & J. Lehr, May 31, 2022 in CFact

beautiful white icy hill with cave in antarctic

 

Could Antarctica’s ‘Doomsday Glacier’ meet its doom within 3 years?

Time is melting away for one of Antarctica’s biggest glaciers, and its rapid deterioration could end with the ice shelf’s complete collapse in just a few years,” alarmist researchers warned at a virtual press briefing on Dec. 13, 2021 at the annual meeting of the American Geophysical Union (AGU)–a once outstanding professional society, but now a shill for the left.

Above is the first sentence of the article titled Antarctica’s ‘Doomsday Glacier’ could meet its doom within 3 years,not what we would expect to see from a once reputable source, the AGU. It warns us that in a few years, the world’s largest glacier, about the size of Florida, will melt and raise ocean levels by up to 3 meters (about 10 ft). It then tells us that the glacier is melting from below because the surrounding ocean waters have been warmed thanks to human-induced climate change.Finally, it tells us that a team of more than 100 scientists from the USA and the UK have been studying the Thwaites glacier and sharing their findings with scientists worldwide.

The article then explains that the Thwaites is not melting from above, but the melting is coming from below,from the warmed-up oceans that have been warmed by human-made CO2 and the greenhouse effect. The bulk of the article then proceeds to detail the forecasted consequences around the world:

This team may not have even been communicating with each other. Almost a decade earlier, geologists were seeing evidence of volcanoes in a known active tectonic plate boundary, buried under the glacier and the oceans. Before 2017, at least 47 volcanoes were found in western Antarctica and around the area of the Thwaites glacier. In 2017 the Guardian reported that an additional 91 volcanoes had been found along the western shores of Antarctica, with some sitting under the Twaites glacier itself. See the article Scientists discover 91 volcanoes below Antarctic ice sheet.

Correcting Misinformation on Atmospheric Carbon Dioxide

by Bud Bromley, May 20, 2022 in budbromley


Abstract

Digital signal processing technology was used to analyze daily carbon dioxide data from the joint NOAA – Scripps Oceanographic Institution’s Global Monitoring Laboratory (MLO).  The period surrounding the 1991 eruption of the Pinatubo volcano was rigorously analyzed for slope and acceleration of net global average atmospheric CO2 concentration and found to be consistent with the theory that Henry’s Law, the Law of Mass Action, and Le Chatelier’s principle control net global average atmospheric CO2 concentration rather than human-produced CO2 emissions.  Background and theory are explained.  A method of using common physics and math for a novel purpose is presented to compare natural CO2emission or absorption with human-produced CO2 emission.  The claim that human-produced CO2 emission is causing increasing global CO2 concentration and climate change is shown to be without scientific merit.  

Key words: carbon, CO2, climate, warming, Impulse, Pinatubo, Henry’s Law, Mauna Loa 

Figure 1. Photo of Pinatubo eruption by Dave Harlowe, USGS. Public domain

A new volcanic province: an inventory of subglacial volcanoes in West Antarctica

by M. van Wyk et al., May 29, 2017 in LyellSpecPublications


(a) Location of the main components of the West Antarctic Rift System and confirmed volcanoes (red circles: after LeMasurier et al. 1990; Smellie & Edwards 2016). (b) Location of Holocene volcanoes (red circles) in the Ethiopia/Kenya branch of the East African Rift (red shaded area). The majority of this activity is aligned along the rift axis with occasional flank volcanism. Data from Siebert & Simkin (2002) and Global Volcanism Program (2013).

 Abstract

The West Antarctic Ice Sheet overlies the West Antarctic Rift System about which, due to the comprehensive ice cover, we have only limited and sporadic knowledge of volcanic activity and its extent. Improving our understanding of subglacial volcanic activity across the province is important both for helping to constrain how volcanism and rifting may have influenced ice-sheet growth and decay over previous glacial cycles, and in light of concerns over whether enhanced geothermal heat fluxes and subglacial melting may contribute to instability of the West Antarctic Ice Sheet. Here, we use ice-sheet bed-elevation data to locate individual conical edifices protruding upwards into the ice across West Antarctica, and we propose that these edifices represent subglacial volcanoes. We used aeromagnetic, aerogravity, satellite imagery and databases of confirmed volcanoes to support this interpretation. The overall result presented here constitutes a first inventory of West Antarctica’s subglacial volcanism. We identified 138 volcanoes, 91 of which have not previously been identified, and which are widely distributed throughout the deep basins of West Antarctica, but are especially concentrated and orientated along the >3000 km central axis of the West Antarctic Rift System.

Ancient Ice Reveals Scores of Gigantic Volcanic Eruptions

by C. Rotter, Mar 15, 2022 in WUWT/ClimPast


Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka)

Abstract

Large volcanic eruptions occurring in the last glacial period can be detected by their accompanying sulfuric acid deposition in continuous ice cores. Here we employ continuous sulfate and sulfur records from three Greenland and three Antarctic ice cores to estimate the emission strength, the frequency and the climatic forcing of large volcanic eruptions that occurred during the second half of the last glacial period and the early Holocene, 60–9 kyr before 2000 CE (b2k). Over most of the investigated interval the ice cores are synchronized, making it possible to distinguish large eruptions with a global sulfate distribution from eruptions detectable in one hemisphere only. Due to limited data resolution and large variability in the sulfate background signal, particularly in the Greenland glacial climate, we only list Greenland sulfate depositions larger than 20 kg km−2 and Antarctic sulfate depositions larger than 10 kg km−2. With those restrictions, we identify 1113 volcanic eruptions in Greenland and 737 eruptions in Antarctica within the 51 kyr period – for which the sulfate deposition of 85 eruptions is found at both poles (bipolar eruptions). Based on the ratio of Greenland and Antarctic sulfate deposition, we estimate the latitudinal band of the bipolar eruptions and assess their approximate climatic forcing based on established methods. A total of 25 of the identified bipolar eruptions are larger than any volcanic eruption occurring in the last 2500 years, and 69 eruptions are estimated to have larger sulfur emission strengths than the Tambora, Indonesia, eruption (1815 CE). Throughout the investigated period, the frequency of volcanic eruptions is rather constant and comparable to that of recent times. During the deglacial period (16–9 ka b2k), however, there is a notable increase in the frequency of volcanic events recorded in Greenland and an obvious increase in the fraction of very large eruptions. For Antarctica, the deglacial period cannot be distinguished from other periods. This confirms the suggestion that the isostatic unloading of the Northern Hemisphere (NH) ice sheets may be related to the enhanced NH volcanic activity. Our ice-core-based volcanic sulfate records provide the atmospheric sulfate burden and estimates of climate forcing for further research on climate impact and understanding the mechanism of the Earth system.How to cite. Lin, J., Svensson, A., Hvidberg, C. S., Lohmann, J., Kristiansen, S., Dahl-Jensen, D., Steffensen, J. P., Rasmussen, S. O., Cook, E., Kjær, H. A., Vinther, B. M., Fischer, H., Stocker, T., Sigl, M., Bigler, M., Severi, M., Traversi, R., and Mulvaney, R.: Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka), Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022,

Rare earths reveal new info in volcanoes’ CO2 emissions

by Mining.com Staff Writer, Jan 28, 2022, in TheNorthernMinerMaps


In a paper published in the journal Geology, the scientists explain that over geological times, variations in atmospheric CO2 depended mainly on volcanic emissions, which are difficult to estimate because they are not directly related to the volume of the magmas that erupted. Indeed, some volcanoes show exceptionally large emissions of CO2 when compared to the amount that can be dissolved in their magmas. Etna is perhaps the most striking example, contributing to 10% (9000 tons/day) of the present global volcanic CO2 emission. That is three times more CO2 than a volcano like Kilauea in Hawaii emits, which erupts four times more magma.

But ratios of Nb/Ta are very constant in many rocks and are only modified by few geological processes—like the infiltration of carbonate-rich melts in earth’s mantle.

The climate moaners need to get some perspective from history

by Ian Plimmer, Nov 4, 2021, SpectatorAustralia


Greta Thunberg rejects all ideas of the enlightenment. Despite what she wails, she is now living in the best times ever to be a child on planet Earth. She can actually go to FLOP26, something that few of us would want to do. Would she prefer to live in the worst of times when there was panic, suffering, environmental damage, death and no hope which she claims exists today?  

We now eat better, are less affected by natural disasters and are able to cope with extremes of weather and climate. During the last 4 of at least 20,000 generations of humans, child mortality has decreased and global human longevity increased from 25 to 79 years. The climate moaners need to get some perspective from history. 

The worst years to live since the time of Jesus were 535-550 AD because massive volcanic eruptions, perhaps Kamchatka or Alaska in 535-536 AD and Ilopango in El Salvador from 539-540 AD. The Northern Hemisphere atmosphere with filled with dust and acid sulphate clouds. These volcanic eruptions were coincidental with extraterrestrial impacts in March 536 AD in the Gulf of Carpentaria and elsewhere in August 536 AD. To make matters worse, these were at the time of a Solar Minimum. 

The Sun was dimmed for 18 months, a white sulphuric acid aerosol cloud enveloped Europe, global temperature dropped by 1.5 to 2.5°C producing worldwide crop failures and death by starvation. There was migration (e.g. Slavic speaking people), political turmoil and the collapse of empires (e.g. Sasanian Empire in Persia). Tree rings show almost no growth for a few years.  

 

Continuer la lecture de The climate moaners need to get some perspective from history

NYIRAGONGO VOLCANO ERUPTS TO 45,000 FEET: DR CONGO ORDERS CITYWIDE EVACUATIONSp Allon,

by Cap Allon, May 23, 2021 in Electroverse


Nyiragongo’s deadliest eruption in history was that of 1977 (during the weak solar minimum of cycle 20) — this event went down as a VEI 1, according to historical observations, yet still managed to kill more than 600 people.

Saturday evening’s eruption looks bigger.

This was likely the volcano’s strongest eruption in recorded history.

UPTICK

Seismic and Volcanic activity has been correlated to changes in the Sun.

The recent global uptick in earthquakes and volcanic eruptions is likely attributed to the drop-off in solar activity, coronal holes, a waning magnetosphere, and the increase in Galactic Cosmic Rays penetrating silica-rich magma.

The COLD TIMES are returning, the mid-latitudes are REFREEZING, in line with a volcanic uptickthe great conjunction, historically low solar activitycloud-nucleating Cosmic Rays, and a meridional jet stream flow (among other forcings).

Both NOAA and NASA appear to agree, if you read between the lines, with NOAA saying we’re entering a ‘full-blown’ Grand Solar Minimum in the late-2020s, and NASA seeing this upcoming solar cycle (25) as “the weakest of the past 200 years”, with the agency correlating previous solar shutdowns to prolonged periods of global cooling here.

Furthermore, we can’t ignore the slew of new scientific papers stating the immense impact The Beaufort Gyre could have on the Gulf Stream, and therefore the climate overall.

MAGMATIC MOVEMENTS REGISTERED UNDER FAGRADALSFJALL VOLCANO, ICELAND — 34,000 QUAKES IN TWO WEEKS, ERUPTION LIKELY

by Cap Allon, March 11, 2021 in Electroverse


A “seismic crisis” has been occurring in the area near Fagradalsfjall since late Feb 2021. This activity has been interpreted as intrusion of magma at shallow depths, which could lead to a new eruption.

Fadradalsfjall is a Pleistocene table mountain in the Reykjanes Peninsula, NE of Grindavik, Iceland.

Of today’s reawakening volcanoes, those located in Iceland are perhaps the most concerning.

It is this highly-volcanic region that will likely be home to the next “big one” (a repeat of the 536 AD eruption that took out the Roman Republic…?) — the one that will return Earth to another volcanic winter.

Volcanic eruptions are one of the key forcings driving Earth into its next bout of global cooling.

Volcanic ash (particulates) fired above 10km –and so into the stratosphere– shade sunlight and reduce terrestrial temperatures. The smaller particulates from an eruption can linger in the upper atmosphere for years, or even decades+ at a time.

Today’s worldwide volcanic uptick is thought to be tied to low solar activity, coronal holes, a waning magnetosphere, and the influx of Cosmic Rays penetrating silica-rich magma.

The COLD TIMES are returning, the mid-latitudes are REFREEZING in line with the great conjunction, historically low solar activitycloud-nucleating Cosmic Rays, and a meridional jet stream flow (among other forcings).

Both NOAA and NASA appear to agree, if you read between the lines, with NOAA saying we’re entering a ‘full-blown’ Grand Solar Minimum in the late-2020s, and NASA seeing this upcoming solar cycle (25) as “the weakest of the past 200 years”, with the agency correlating previous solar shutdowns to prolonged periods of global cooling here.

Furthermore, we can’t ignore the slew of new scientific papers stating the immense impact The Beaufort Gyre could have on the Gulf Stream, and therefore the climate overall.

Antarctica’s Larsen Ice Shelf Break-Up Driven by Geological Heat Flow Not Climate Change

by J.E. Kamis, Jan 19, 2017 in PlateClimatology


 

Figure 1  North tip of Antarctic Continent including Larsen Ice Shelf Outline (black line), very active
West Antarctica Rift / Fault System (red lines), and currently erupting or semi-active volcanoes (red dots).

Progressive bottom melting and break-up of West Antarctica’s seafloor hugging Larsen Ice Shelf is fueled by heat and heated fluid flow from numerous very active geological features, and not climate change.

This ice shelf break-up process has been the focus of an absolute worldwide media frenzy contending man-made atmospheric global warming is at work in the northwest peninsula of Antarctica. As evidence, media articles typically include tightly edited close-up photos of cracks forming on the surface of the Larsen Ice Shelf (Figure 2) accompanied by text laced with global warming alarmist catch phrases. This “advertising / marketing” approach does in fact produce beautiful looking and expertly written articles. However, they lack subsidence, specifically a distinct absence of actual scientific data and observations supporting the purported strong connection to manmade atmospheric global warming.

Working level scientists familiar with, or actually performing research on, the Larsen Ice Shelf utilize an entirely different approach when speaking about or writing about what is fueling this glacial ice break-up. They ascribe the break-up to poorly understood undefined natural forces (see quote below). Unfortunately, comments by these scientists are often buried deep in media articles and never seem to match the alarmist tone of the article’s headline.

“Scientists have been monitoring the rift on the ice shelf for decades. Researchers told NBC News that the calving event was “part of the natural evolution of the ice shelf,” but added there could be a link to changing climate, though they had no direct evidence of it.” (see here)

Newly Discovered Greenland Plume Drives Thermal Activities in the Arctic

by C. Rotter, Dec 29, 2020  in WUWT


A team of researchers understands more about the melting of the Greenland ice sheet. They discovered a flow of hot rocks, known as a mantle plume, rising from the core-mantle boundary beneath central Greenland that melts the ice from below.

The results of their two-part study were published in the Journal of Geophysical Research.

“Knowledge about the Greenland plume will bolster our understanding of volcanic activities in these regions and the problematic issue of global sea-level rising caused by the melting of the Greenland ice sheet,” said Dr. Genti Toyokuni, co-author of the studies.

The North Atlantic region is awash with geothermal activity. Iceland and Jan Mayen contain active volcanoes with their own distinct mantle plumes, whilst Svalbard – a Norwegian archipelago in the Arctic Ocean – is a geothermal area. However, the origin of these activities and their interconnectedness has largely been unexplored.

The research team discovered that the Greenland plume rose from the core-mantle boundary to the mantle transition zone beneath Greenland. The plume also has two branches in the lower mantle that feed into other plumes in the region

 

Volcanic eruptions directly triggered ocean acidification during Early Cretaceous

by Northwestern University, Dec 21, 2020 in ScienceDaily


Around 120 million years ago, the earth experienced an extreme environmental disruption that choked oxygen from its oceans.

Known as oceanic anoxic event (OAE) 1a, the oxygen-deprived water led to a minor — but significant — mass extinction that affected the entire globe. During this age in the Early Cretaceous Period, an entire family of sea-dwelling nannoplankton virtually disappeared.

By measuring calcium and strontium isotope abundances in nannoplankton fossils, Northwestern earth scientists have concluded the eruption of the Ontong Java Plateau large igneous province (LIP) directly triggered OAE1a. Roughly the size of Alaska, the Ontong Java LIP erupted for seven million years, making it one of the largest known LIP events ever. During this time, it spewed tons of carbon dioxide (CO2) into the atmosphere, pushing Earth into a greenhouse period that acidified seawater and suffocated the oceans.

Newly discovered Greenland plume drives thermal activities in the Arctic

by Tohoku University, Dec 7, 2020 in ScienceDaily


A team of researchers understands more about the melting of the Greenland ice sheet. They discovered a flow of hot rocks, known as a mantle plume, rising from the core-mantle boundary beneath central Greenland that melts the ice from below.

The results of their two-part study were published in the Journal of Geophysical Research.

“Knowledge about the Greenland plume will bolster our understanding of volcanic activities in these regions and the problematic issue of global sea-level rising caused by the melting of the Greenland ice sheet,” said Dr. Genti Toyokuni, co-author of the studies.

The North Atlantic region is awash with geothermal activity. Iceland and Jan Mayen contain active volcanoes with their own distinct mantle plumes, whilst Svalbard — a Norwegian archipelago in the Arctic Ocean — is a geothermal area. However, the origin of these activities and their interconnectedness has largely been unexplored