Archives par mot-clé : CO2

EU trend of CO2 reduction seems to have stopped

by Peter Teffer, May 4, 2017 in euobserver


The EU’s statistical agency Eurostat announced Thursday (4 May) that CO2 emissions resulting from the EU’s energy use have “slightly decreased” in 2016, compared to the year before.

But Eurostat’s press release did not mention that the small decrease has not made up for the small increase in CO2 emissions the year before, and that more CO2 was emitted in 2016 than in 2014.

Questions on the rate of global carbon dioxide increase

by Robert Balic, April 7, 2017


Its also a stretch to assume perfect correlation of the real values, especially since its claimed that CO2 levels have increased due to human emissions and the latter have been at a steady rate for the last three years. There is also the question of why such a good correlation with SH sea-surface temperatures and not NH, and why should the correlation be so perfect when things like changes in ocean currents should have a large effect on how much is sequestered into the depths of the oceans.

The Logarithmic Effect of Carbon Dioxide

by David Archibald, March 8, 2010


The greenhouse gasses keep the Earth 30° C warmer than it would otherwise be without them in the atmosphere, so instead of the average surface temperature being -15° C, it is 15° C. Carbon dioxide contributes 10% of the effect so that is 3° C. The pre-industrial level of carbon dioxide in the atmosphere was 280 ppm. So roughly, if the heating effect was a linear relationship, each 100 ppm contributes 1° C. With the atmospheric concentration rising by 2 ppm annually, it would go up by 100 ppm every 50 years and we would all fry as per the IPCC predictions.

But the relationship isn’t linear, it is logarithmic. In 2006, Willis Eschenbach posted this graph on Climate Audit showing the logarithmic heating effect of carbon dioxide relative to atmospheric concentration

IEA finds CO2 emissions flat for third straight year even as global economy grew in 2016

International Energy Agency, March 17, 2017


The biggest drop came from the United States, where carbon dioxide emissions fell 3%, or 160 million tonnes, while the economy grew by 1.6%. The decline was driven by a surge in shale gas supplies and more attractive renewable power that displaced coal. Emissions in the United States last year were at their lowest level since 1992, a period during which the economy grew by 80%.

Scrutinizing the carbon cycle and CO2 residence time in the atmosphere

by Hermann Harde, Global and Planetary Change, 24 February 2017


Highlights

An alternative carbon cycle is presented in agreement with the carbon 14 decay.

The CO2 uptake rate scales proportional to the COconcentration.

Temperature dependent natural emission and absorption rates are considered.

The average residence time of CO2 in the atmosphere is found to be 4 years.

Paleoclimatic CO2 variations and the actual CO2 growth rate are well-reproduced.

The anthropogenic fraction of CO2 in the atmosphere is only 4.3%.

Human emissions only contribute 15% to the CO2 increase over the Industrial Era.

Also this link

Climate Science : some principles

Dr.  Albert Jacobs, Calgary, Canada


Climate science seems to have been taken over by politicians and the media. It is therefore essential to keep the debate alive on scientific principles, rather than popular hype.

This complex amalgam of scientific disciplines, called Climate Science, is replete with uncertainties and controversies. Politicians will proclaim that “The Science is settled”, because politicians do not want to deal with uncertainties. As scientists, we know that science is never “settled”. Scientific progress thrives on challenges and debate and it is up to science organisations to foster that.

I will list a number of essential aspects …

(See also CO2 as a function of geologic times)

Le changement climatique : la règle en géologie … Le taux de CO2 atmosphérique n’a jamais été aussi faible qu’aujourd’hui et la relation température/teneur en CO2 reste encore mal comprise

par Alain Préat

Article publié ( 27 décembre 2016) sur http://revue-arguments.com

Egalement pour les commentaires, sur le site notre-planete.info


Un écheveau d’une incroyable complexité

Depuis que la Terre existe, c’est-à-dire depuis 4,567 milliards d’années [1], s’il est bien une constante c’est qu’elle n’est jamais restée figée telle quelle, et qu’elle fut sans cesse profondément modifiée de façon plutôt aléatoire. Cela concerne autant les processus internes (notamment la composition de la lithosphère et les variations des mécanismes affectant la dérive des continents) que les processus externes. Parmi ces derniers l’atmosphère n’a cessé de varier du tout au tout notamment en ce qui concerne sa composition gazeuse. L’ensemble de ces processus internes et externes se sont sans cesse ‘télescopés’ et ont entraîné des rétroactions complexes à l’origine des nombreux changements climatiques observés dans les archives géologiques. A ces paramètres s’ajoutent également ceux pilotés à l’échelle extraterrestre, parmi les plus importants citons l’activité du Soleil ou les variations des paramètres orbitaux de notre Planète (précession, obliquité, écliptique). Le résultat est une combinaison extrêmement complexe de processus cumulatifs réguliers, irréguliers, linéaires ou non, chaotiques souvent, jouant à toutes les échelles temporelles et affectant à tout moment le climat qui en constitue une réponse. Physiciens, chimistes, biologistes, géographes… géologues tentent chacun à partir de son pré-carré de démêler cet écheveau particulièrement difficile à comprendre. Les synergies entre les disciplines sont heureusement nombreuses et le système climatique est peu à peu mis à nu à travers les temps géologiques (voir figure ci-dessous pour la succession des âges géologiques).

Echelle des temps géologiques:

ChronostratChart2016-04

Climate Change : the Rule in the Geological Record (Conference)

par Alain Préat


 The first aim of paleoclimate science is to identify from observations of the geological record, the  nature of past climate changes. Paleoclimate is probably the oldest discipline in Earth science, it began in the 19th-century, and earlier with the discovery of elephant-like beast in the superficial deposits of Europe and Siberia debate about the intepretation in the 18th-century. The debate was about these surface enviroments of temperate areas shaped by the biblic flood or by glaciers [Préat, 2015 http://www.notre-planete.info/actualites/actu_4356.php]. By the middle of the 20th-century, many climate features associated with the recent ice ages have been identified. Geological processes are critical to the evolution of the climate. The most important issue pertaining the earliest evolution of the Earth’s climate is that energy emitted by the sun has progressively increased over 4.6Ga.  Recontructing climate history from the inherently incomplete geological record requires integrated analyses including geochronology, paleomagnetostratigraphy, paleobiology, paleotectonics etc.  Climate change in the geological past is the rule, it has been reconstructed using a number of key archives (including sedimentary, geochemical proxies) since billion of years. These records reveal that since its birth the Earth’s climate as a rule has been warming up or cooling down with periods of (super)greenhouse and (super)icehouse modes, on scales of thousands to hundreds of million of years. The controlling factors are both cyclic (external or astronomical) and secular (internal to the Earth) and related to plate tectonics. For more than 90 percent of its 4.6 billion-year history, Earth has been too  warm, even at the poles, for ice sheets to form. We live  in unusual times at least from the cooling at the Eocene-Oligocene boundary (± 34 Ma)  with the glaciating Antarctica. The Earth was also severely glaciated several times in its history (e.g. about 750 and 535 Ma).  As an example of the conditions prevailing in the very warm times, oxygen isotopes suggest that the Archean seawater (4.0-2.5 Ga) coud have experimented hyperthermal environments, with temperatures as high as 55-85°C [Knauth, 2005 Palaeogeography, Palaeoclimatology,  Palaeoecology, 219 : 53-69]. Considering the Precambrian as a whole (4.6-0.541 Ga), prior to about 2.2 billion years ago, the amount of oxygen in the atmosphere and surface ocean was small, concentrations of CO2 were as high as 100-1000 times modern levels, as those of CH4 which were more higher. Complex microbial eocosystems developed during this period (sulfate-reducing bacteria, autotrophic methanogens, fermenting bacteria, anoxygenic phototrophic bacteria) and could have been important contributors to the biological productivity of early Earth. Past about 2.2 Ga the productivity began to be driven by oxygen-producing (micro)organisms.