Archives par mot-clé : Volcanism

Correcting Misinformation on Atmospheric Carbon Dioxide

by Bud Bromley, May 20, 2022 in budbromley


Abstract

Digital signal processing technology was used to analyze daily carbon dioxide data from the joint NOAA – Scripps Oceanographic Institution’s Global Monitoring Laboratory (MLO).  The period surrounding the 1991 eruption of the Pinatubo volcano was rigorously analyzed for slope and acceleration of net global average atmospheric CO2 concentration and found to be consistent with the theory that Henry’s Law, the Law of Mass Action, and Le Chatelier’s principle control net global average atmospheric CO2 concentration rather than human-produced CO2 emissions.  Background and theory are explained.  A method of using common physics and math for a novel purpose is presented to compare natural CO2emission or absorption with human-produced CO2 emission.  The claim that human-produced CO2 emission is causing increasing global CO2 concentration and climate change is shown to be without scientific merit.  

Key words: carbon, CO2, climate, warming, Impulse, Pinatubo, Henry’s Law, Mauna Loa 

Figure 1. Photo of Pinatubo eruption by Dave Harlowe, USGS. Public domain

A new volcanic province: an inventory of subglacial volcanoes in West Antarctica

by M. van Wyk et al., May 29, 2017 in LyellSpecPublications


(a) Location of the main components of the West Antarctic Rift System and confirmed volcanoes (red circles: after LeMasurier et al. 1990; Smellie & Edwards 2016). (b) Location of Holocene volcanoes (red circles) in the Ethiopia/Kenya branch of the East African Rift (red shaded area). The majority of this activity is aligned along the rift axis with occasional flank volcanism. Data from Siebert & Simkin (2002) and Global Volcanism Program (2013).

 Abstract

The West Antarctic Ice Sheet overlies the West Antarctic Rift System about which, due to the comprehensive ice cover, we have only limited and sporadic knowledge of volcanic activity and its extent. Improving our understanding of subglacial volcanic activity across the province is important both for helping to constrain how volcanism and rifting may have influenced ice-sheet growth and decay over previous glacial cycles, and in light of concerns over whether enhanced geothermal heat fluxes and subglacial melting may contribute to instability of the West Antarctic Ice Sheet. Here, we use ice-sheet bed-elevation data to locate individual conical edifices protruding upwards into the ice across West Antarctica, and we propose that these edifices represent subglacial volcanoes. We used aeromagnetic, aerogravity, satellite imagery and databases of confirmed volcanoes to support this interpretation. The overall result presented here constitutes a first inventory of West Antarctica’s subglacial volcanism. We identified 138 volcanoes, 91 of which have not previously been identified, and which are widely distributed throughout the deep basins of West Antarctica, but are especially concentrated and orientated along the >3000 km central axis of the West Antarctic Rift System.

Ancient Ice Reveals Scores of Gigantic Volcanic Eruptions

by C. Rotter, Mar 15, 2022 in WUWT/ClimPast


Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka)

Abstract

Large volcanic eruptions occurring in the last glacial period can be detected by their accompanying sulfuric acid deposition in continuous ice cores. Here we employ continuous sulfate and sulfur records from three Greenland and three Antarctic ice cores to estimate the emission strength, the frequency and the climatic forcing of large volcanic eruptions that occurred during the second half of the last glacial period and the early Holocene, 60–9 kyr before 2000 CE (b2k). Over most of the investigated interval the ice cores are synchronized, making it possible to distinguish large eruptions with a global sulfate distribution from eruptions detectable in one hemisphere only. Due to limited data resolution and large variability in the sulfate background signal, particularly in the Greenland glacial climate, we only list Greenland sulfate depositions larger than 20 kg km−2 and Antarctic sulfate depositions larger than 10 kg km−2. With those restrictions, we identify 1113 volcanic eruptions in Greenland and 737 eruptions in Antarctica within the 51 kyr period – for which the sulfate deposition of 85 eruptions is found at both poles (bipolar eruptions). Based on the ratio of Greenland and Antarctic sulfate deposition, we estimate the latitudinal band of the bipolar eruptions and assess their approximate climatic forcing based on established methods. A total of 25 of the identified bipolar eruptions are larger than any volcanic eruption occurring in the last 2500 years, and 69 eruptions are estimated to have larger sulfur emission strengths than the Tambora, Indonesia, eruption (1815 CE). Throughout the investigated period, the frequency of volcanic eruptions is rather constant and comparable to that of recent times. During the deglacial period (16–9 ka b2k), however, there is a notable increase in the frequency of volcanic events recorded in Greenland and an obvious increase in the fraction of very large eruptions. For Antarctica, the deglacial period cannot be distinguished from other periods. This confirms the suggestion that the isostatic unloading of the Northern Hemisphere (NH) ice sheets may be related to the enhanced NH volcanic activity. Our ice-core-based volcanic sulfate records provide the atmospheric sulfate burden and estimates of climate forcing for further research on climate impact and understanding the mechanism of the Earth system.How to cite. Lin, J., Svensson, A., Hvidberg, C. S., Lohmann, J., Kristiansen, S., Dahl-Jensen, D., Steffensen, J. P., Rasmussen, S. O., Cook, E., Kjær, H. A., Vinther, B. M., Fischer, H., Stocker, T., Sigl, M., Bigler, M., Severi, M., Traversi, R., and Mulvaney, R.: Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka), Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022,

Rare earths reveal new info in volcanoes’ CO2 emissions

by Mining.com Staff Writer, Jan 28, 2022, in TheNorthernMinerMaps


In a paper published in the journal Geology, the scientists explain that over geological times, variations in atmospheric CO2 depended mainly on volcanic emissions, which are difficult to estimate because they are not directly related to the volume of the magmas that erupted. Indeed, some volcanoes show exceptionally large emissions of CO2 when compared to the amount that can be dissolved in their magmas. Etna is perhaps the most striking example, contributing to 10% (9000 tons/day) of the present global volcanic CO2 emission. That is three times more CO2 than a volcano like Kilauea in Hawaii emits, which erupts four times more magma.

But ratios of Nb/Ta are very constant in many rocks and are only modified by few geological processes—like the infiltration of carbonate-rich melts in earth’s mantle.

The climate moaners need to get some perspective from history

by Ian Plimmer, Nov 4, 2021, SpectatorAustralia


Greta Thunberg rejects all ideas of the enlightenment. Despite what she wails, she is now living in the best times ever to be a child on planet Earth. She can actually go to FLOP26, something that few of us would want to do. Would she prefer to live in the worst of times when there was panic, suffering, environmental damage, death and no hope which she claims exists today?  

We now eat better, are less affected by natural disasters and are able to cope with extremes of weather and climate. During the last 4 of at least 20,000 generations of humans, child mortality has decreased and global human longevity increased from 25 to 79 years. The climate moaners need to get some perspective from history. 

The worst years to live since the time of Jesus were 535-550 AD because massive volcanic eruptions, perhaps Kamchatka or Alaska in 535-536 AD and Ilopango in El Salvador from 539-540 AD. The Northern Hemisphere atmosphere with filled with dust and acid sulphate clouds. These volcanic eruptions were coincidental with extraterrestrial impacts in March 536 AD in the Gulf of Carpentaria and elsewhere in August 536 AD. To make matters worse, these were at the time of a Solar Minimum. 

The Sun was dimmed for 18 months, a white sulphuric acid aerosol cloud enveloped Europe, global temperature dropped by 1.5 to 2.5°C producing worldwide crop failures and death by starvation. There was migration (e.g. Slavic speaking people), political turmoil and the collapse of empires (e.g. Sasanian Empire in Persia). Tree rings show almost no growth for a few years.  

 

Continuer la lecture de The climate moaners need to get some perspective from history

NYIRAGONGO VOLCANO ERUPTS TO 45,000 FEET: DR CONGO ORDERS CITYWIDE EVACUATIONSp Allon,

by Cap Allon, May 23, 2021 in Electroverse


Nyiragongo’s deadliest eruption in history was that of 1977 (during the weak solar minimum of cycle 20) — this event went down as a VEI 1, according to historical observations, yet still managed to kill more than 600 people.

Saturday evening’s eruption looks bigger.

This was likely the volcano’s strongest eruption in recorded history.

UPTICK

Seismic and Volcanic activity has been correlated to changes in the Sun.

The recent global uptick in earthquakes and volcanic eruptions is likely attributed to the drop-off in solar activity, coronal holes, a waning magnetosphere, and the increase in Galactic Cosmic Rays penetrating silica-rich magma.

The COLD TIMES are returning, the mid-latitudes are REFREEZING, in line with a volcanic uptickthe great conjunction, historically low solar activitycloud-nucleating Cosmic Rays, and a meridional jet stream flow (among other forcings).

Both NOAA and NASA appear to agree, if you read between the lines, with NOAA saying we’re entering a ‘full-blown’ Grand Solar Minimum in the late-2020s, and NASA seeing this upcoming solar cycle (25) as “the weakest of the past 200 years”, with the agency correlating previous solar shutdowns to prolonged periods of global cooling here.

Furthermore, we can’t ignore the slew of new scientific papers stating the immense impact The Beaufort Gyre could have on the Gulf Stream, and therefore the climate overall.

MAGMATIC MOVEMENTS REGISTERED UNDER FAGRADALSFJALL VOLCANO, ICELAND — 34,000 QUAKES IN TWO WEEKS, ERUPTION LIKELY

by Cap Allon, March 11, 2021 in Electroverse


A “seismic crisis” has been occurring in the area near Fagradalsfjall since late Feb 2021. This activity has been interpreted as intrusion of magma at shallow depths, which could lead to a new eruption.

Fadradalsfjall is a Pleistocene table mountain in the Reykjanes Peninsula, NE of Grindavik, Iceland.

Of today’s reawakening volcanoes, those located in Iceland are perhaps the most concerning.

It is this highly-volcanic region that will likely be home to the next “big one” (a repeat of the 536 AD eruption that took out the Roman Republic…?) — the one that will return Earth to another volcanic winter.

Volcanic eruptions are one of the key forcings driving Earth into its next bout of global cooling.

Volcanic ash (particulates) fired above 10km –and so into the stratosphere– shade sunlight and reduce terrestrial temperatures. The smaller particulates from an eruption can linger in the upper atmosphere for years, or even decades+ at a time.

Today’s worldwide volcanic uptick is thought to be tied to low solar activity, coronal holes, a waning magnetosphere, and the influx of Cosmic Rays penetrating silica-rich magma.

The COLD TIMES are returning, the mid-latitudes are REFREEZING in line with the great conjunction, historically low solar activitycloud-nucleating Cosmic Rays, and a meridional jet stream flow (among other forcings).

Both NOAA and NASA appear to agree, if you read between the lines, with NOAA saying we’re entering a ‘full-blown’ Grand Solar Minimum in the late-2020s, and NASA seeing this upcoming solar cycle (25) as “the weakest of the past 200 years”, with the agency correlating previous solar shutdowns to prolonged periods of global cooling here.

Furthermore, we can’t ignore the slew of new scientific papers stating the immense impact The Beaufort Gyre could have on the Gulf Stream, and therefore the climate overall.

Antarctica’s Larsen Ice Shelf Break-Up Driven by Geological Heat Flow Not Climate Change

by J.E. Kamis, Jan 19, 2017 in PlateClimatology


 

Figure 1  North tip of Antarctic Continent including Larsen Ice Shelf Outline (black line), very active
West Antarctica Rift / Fault System (red lines), and currently erupting or semi-active volcanoes (red dots).

Progressive bottom melting and break-up of West Antarctica’s seafloor hugging Larsen Ice Shelf is fueled by heat and heated fluid flow from numerous very active geological features, and not climate change.

This ice shelf break-up process has been the focus of an absolute worldwide media frenzy contending man-made atmospheric global warming is at work in the northwest peninsula of Antarctica. As evidence, media articles typically include tightly edited close-up photos of cracks forming on the surface of the Larsen Ice Shelf (Figure 2) accompanied by text laced with global warming alarmist catch phrases. This “advertising / marketing” approach does in fact produce beautiful looking and expertly written articles. However, they lack subsidence, specifically a distinct absence of actual scientific data and observations supporting the purported strong connection to manmade atmospheric global warming.

Working level scientists familiar with, or actually performing research on, the Larsen Ice Shelf utilize an entirely different approach when speaking about or writing about what is fueling this glacial ice break-up. They ascribe the break-up to poorly understood undefined natural forces (see quote below). Unfortunately, comments by these scientists are often buried deep in media articles and never seem to match the alarmist tone of the article’s headline.

“Scientists have been monitoring the rift on the ice shelf for decades. Researchers told NBC News that the calving event was “part of the natural evolution of the ice shelf,” but added there could be a link to changing climate, though they had no direct evidence of it.” (see here)

Newly Discovered Greenland Plume Drives Thermal Activities in the Arctic

by C. Rotter, Dec 29, 2020  in WUWT


A team of researchers understands more about the melting of the Greenland ice sheet. They discovered a flow of hot rocks, known as a mantle plume, rising from the core-mantle boundary beneath central Greenland that melts the ice from below.

The results of their two-part study were published in the Journal of Geophysical Research.

“Knowledge about the Greenland plume will bolster our understanding of volcanic activities in these regions and the problematic issue of global sea-level rising caused by the melting of the Greenland ice sheet,” said Dr. Genti Toyokuni, co-author of the studies.

The North Atlantic region is awash with geothermal activity. Iceland and Jan Mayen contain active volcanoes with their own distinct mantle plumes, whilst Svalbard – a Norwegian archipelago in the Arctic Ocean – is a geothermal area. However, the origin of these activities and their interconnectedness has largely been unexplored.

The research team discovered that the Greenland plume rose from the core-mantle boundary to the mantle transition zone beneath Greenland. The plume also has two branches in the lower mantle that feed into other plumes in the region

 

Volcanic eruptions directly triggered ocean acidification during Early Cretaceous

by Northwestern University, Dec 21, 2020 in ScienceDaily


Around 120 million years ago, the earth experienced an extreme environmental disruption that choked oxygen from its oceans.

Known as oceanic anoxic event (OAE) 1a, the oxygen-deprived water led to a minor — but significant — mass extinction that affected the entire globe. During this age in the Early Cretaceous Period, an entire family of sea-dwelling nannoplankton virtually disappeared.

By measuring calcium and strontium isotope abundances in nannoplankton fossils, Northwestern earth scientists have concluded the eruption of the Ontong Java Plateau large igneous province (LIP) directly triggered OAE1a. Roughly the size of Alaska, the Ontong Java LIP erupted for seven million years, making it one of the largest known LIP events ever. During this time, it spewed tons of carbon dioxide (CO2) into the atmosphere, pushing Earth into a greenhouse period that acidified seawater and suffocated the oceans.

Newly discovered Greenland plume drives thermal activities in the Arctic

by Tohoku University, Dec 7, 2020 in ScienceDaily


A team of researchers understands more about the melting of the Greenland ice sheet. They discovered a flow of hot rocks, known as a mantle plume, rising from the core-mantle boundary beneath central Greenland that melts the ice from below.

The results of their two-part study were published in the Journal of Geophysical Research.

“Knowledge about the Greenland plume will bolster our understanding of volcanic activities in these regions and the problematic issue of global sea-level rising caused by the melting of the Greenland ice sheet,” said Dr. Genti Toyokuni, co-author of the studies.

The North Atlantic region is awash with geothermal activity. Iceland and Jan Mayen contain active volcanoes with their own distinct mantle plumes, whilst Svalbard — a Norwegian archipelago in the Arctic Ocean — is a geothermal area. However, the origin of these activities and their interconnectedness has largely been unexplored

 

Life on Earth may have begun in hostile hot springs

by Jack L. Lee, Sep 245, 2020 in Sciencenews


At Bumpass Hell in California’s Lassen Volcanic National Park, the ground is literally boiling, and the aroma of rotten eggs fills the air. Gas bubbles rise through puddles of mud, producing goopy popping sounds. Jets of scorching-hot steam blast from vents in the earth. The fearsome site was named for the cowboy Kendall Bumpass, who in 1865 got too close and stepped through the thin crust. Boiling, acidic water burned his leg so badly that it had to be amputated.

Some scientists contend that life on our planet arose in such seemingly inhospitable conditions. Long before creatures roamed the Earth, hot springs like Bumpass Hell may have promoted chemical reactions that linked together simple molecules in a first step toward complexity. Other scientists, however, place the starting point for Earth’s life underwater, at the deep hydrothermal vents where heated, mineral-rich water billows from cracks in the ocean floor.

As researchers study and debate where and how life on Earth first ignited, their findings offer an important bonus. Understanding the origins of life on this planet could offer hints about where to search for life elsewhere, says Natalie Batalha, an astrophysicist at the University of California, Santa Cruz. “It has very significant implications for the future of space exploration.” Chemist Wenonah Vercoutere agrees. “The rules of physics are the same throughout the whole universe,” says Vercoutere, of NASA’s Ames Research Center in Moffett Field, Calif. “So what is there to say that the rules of biology do not also carry through and are in place and active in the whole universe?”

SANGAY VOLCANO ERUPTS TO 40,000 FT (12.2 KM)

by Cap Allon, Sep 21, 2020 in Electroverse


Ecuador’s active Sangay Volcano exploded in dramatic fashion over the weekend, firing volcanic ash high into the atmosphere — the explosion was a number of times stronger than those previously observed during the volcano’s recent uptick.

The ‘high-level’ eruption occurred at 04:20 local time on Sunday, September 20 and generated a dense, dark ash plume, but the ‘biggie’ was sandwiched between numerous other powerful blasts that occurred throughout the weekend:

More crucially though, particulates ejected to around 32,800 ft (10 km) –and into the stratosphere– can have a direct cooling effect across the planet.

Volcanic eruptions are one of the key forcings driving Earth into its next bout of global cooling. Their worldwide uptick (along with a seismic uptick) is tied to low solar activity, coronal holes, a waning magnetosphere, and the influx of Cosmic Rays penetrating silica-rich magma.

Volcanic ash may have a bigger impact on the climate than we thought

by University of Colorado at Boulder, Sep 11, 2020 in ScienceDaily


“They saw some large particles floating around in the atmosphere a month after the eruption,” Zhu said. “It looked like ash.”

She explained that scientists have long known that volcanic eruptions can take a toll on the planet’s climate. These events blast huge amounts of sulfur-rich particles high into Earth’s atmosphere where they can block sunlight from reaching the ground.

Researchers haven’t thought, however, that ash could play much of a role in that cooling effect. These chunks of rocky debris, scientists reasoned, are so heavy that most of them likely fall out of volcanic clouds not long after an eruption.

Zhu’s team wanted to find out why that wasn’t the case with Kelut. Drawing on aircraft and satellite observations of the unfolding disaster, the group discovered that the volcano’s plume seemed to be rife with small and lightweight particles of ash — tiny particles that were likely capable of floating in the air for long periods of time, much like dandelion fluff.

Journal Reference:

  1. Yunqian Zhu, Owen B. Toon, Eric J. Jensen, Charles G. Bardeen, Michael J. Mills, Margaret A. Tolbert, Pengfei Yu, Sarah Woods. Persisting volcanic ash particles impact stratospheric SO2 lifetime and aerosol optical properties. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-18352-5

WORLDWIDE VOLCANIC UPTICK — MULTIPLE ERUPTIONS TO 45,000+ FT (13.7+ KM) — DIRECT COOLING EFFECT

by Cap Allon, May 1, 2020 in Electroverse


These past few days have seen a violent worldwide volcanic uptick, sending us all further signs that the next Grand Solar Minimum is dawning.

HIMAWARI-8 (a Japanese weather satellite) recorded two HIGH-LEVEL eruptions on May 16, both occurring in Indonesia.

The first took place at Ibu –a relatively new volcano with only 3 notable eruptions; in 1911, 1998, and 2008– and was confirmed by the Volcanic Ash Advisory Center (VAAC) Darwin which warned of an ash plume rising to an estimated 45,000 ft (13.7 km).

The second high-level eruption took place just a few hours later at Semeru –a very active volcano with an eruptive history peppered with VEI 2s and 3s; the first coming in 1818, the most recent in 2014– and as with Ibu’s, Semeru’s eruption was picked up by both HIMAWARI-8 and the VAAC Darwin, with the latter confirming the generation of “a dark ash plume which reached an altitude of 46,000 ft (14 km).”

In addition, and as recently reported by VolcanoDiscovery.com, active lava flows remain active on the Semeru’s southeast flank, currently about 4,921 ft (1.5 km) long (as of the morning of May 18).

https://principia-scientific.org/do-cosmic-rays-trigger-earthquakes-volcanic-eruptions/https://www.researchgate.net/publication/234022172_Explosive_volcanic_eruptions_triggered_by_cosmic_rays_Volcano_as_a_bubble_chamber

Scientists “Discover” Largest Shield Volcano on Earth

by D. Middleton, May 15, 2020 in WUWT


And it’s not Mauna Loa…

UH researchers reveal largest and hottest shield volcano on Earth
Posted on May 13, 2020 by Marcie Grabowski

In a recently published study, researchers from the University of Hawai‘i at Mānoa School of Ocean and Earth Science and Technology revealed the largest and hottest shield volcano on Earth. A team of volcanologists and ocean explorers used several lines of evidence to determine Pūhāhonu, a volcano within the Papahānaumokuākea Marine National Monument, now holds this distinction.

Geoscientists and the public have long thought Mauna Loa, a culturally-significant and active shield volcano on the Big Island of Hawai‘i, was the largest volcano in the world. However, after surveying the ocean floor along the mostly submarine Hawaiian leeward volcano chain, chemically analyzing rocks in the UH Mānoa rock collection, and modeling the results of these studies, the research team came to a new conclusion. Pūhāhonu, meaning ‘turtle rising for breath’ in Hawaiian, is nearly twice as big as Mauna Loa.

“It has been proposed that hotspots that produce volcano chains like Hawai‘i undergo progressive cooling over 1-2 million years and then die,” said Michael Garcia, lead author of the study and retired professor of Earth Sciences at SOEST. “However, we have learned from this study that hotspots can undergo pulses of melt production. A small pulse created the Midway cluster of now extinct volcanoes and another, much bigger one created Pūhāhonu. This will rewrite the textbooks on how mantle plumes work.”

[…]

University of Hawai‘i at Mānoa School of Ocean and Earth Science and Technology

Did heavy rains trigger the eruption of the most dangerous U.S. volcano? Scientists are skeptical

by  RP Ortega, April 22, 2020 in ScienceAAAS


In May 2018, Hawaii’s Kilauea volcano let loose its largest eruption in 200 years, spewing plumes of ash high into the air, and covering hundreds of homes in lava. The eruption terrified local residents, but it gave scientists a once-in-a-lifetime opportunity to study the volcano’s explosive behavior. Now, a new study claims that extreme rainfall boosted underground pressures and was the “dominant factor” in triggering the eruption.

It’s not the first time rainfall has been linked to volcanic activity, says Jenni Barclay, a volcanologist at the University of East Anglia who was not involved in the new work. Previous research suggests storms passing over Mount St. Helens may have played a role in explosive activity between 1989 and 1991. And intense rains fell shortly before and during the activity of Montserrat’s Soufrière Hills volcano from 2001 to 2003. Rain may have also triggered eruptions of Réunion’s Piton de la Fournaise volcano. Still, Barclay believes rain is, at best, a contributing factor to volcanic eruptions and not the main driver. “It’s a series of coincident events that have led to the triggering of this larger episode,” she says.

Researchers on the new study used satellite data from NASA and Japan’s space agency to estimate rainfall during the first months of 2018, before the start of the eruption. More than 2.25 meters of rain fell on the volcano in the first months of 2018, the researchers found. They created a model to show how the accumulated rainfall could seep into the pore spaces in rocks deep underground, boosting pressures that eventually caused fissures in the volcano’s flank to open up and release magma. When they looked at records of previous Kilauea eruptions going back to 1790, they found that 35—more than half—started during the nearly 6-month rainy season.

Magma Flood Linked To Sudden Ancient Global Warming Event

by H. Lee, April 1, 2020 in ClimateChangeDispatch


A study has cemented the link between an intense global warming episode 56 million years ago and volcanism in the North Atlantic, with implications for modern climate change.

Roughly 60 million years ago, circulation changes deep within our planet generated a hot current of rock — the Iceland plume — causing it to rise from the heart of Earth’s mantle.

 

The Giant’s Causeway in Northern Ireland is a geologic feature consisting of thousands of interlocking basalt columns that formed from volcanic eruptions 60 million years ago.

The Wrong Kind Of Carbon

Although a great deal of North Atlantic volcanism happened close in time to the PETM, scientists were initially skeptical that it could have driven the warming.

Sedimentary layers that formed at the time had the wrong kind of carbon — they were rich in the isotope carbon-12, indicating an organic carbon source rather than a volcanic one.

The leading theory was that fluctuations in Earth’s orbit around the sun melted a type of frozen methane just beneath the seabed called methane clathrates.

Yet scientists found scant evidence that enough clathrates existed in the pre-PETM world, or that they could have melted fast enough to drive the warming.

A possible missing link between the North Atlantic Igneous Province and organic carbon was spotted in 2004 in seismic scans through the seabed off the coast of Norway.

Continuer la lecture de Magma Flood Linked To Sudden Ancient Global Warming Event

A chunk of Yellowstone the size of Chicago has been pulsing. Why?

by R.G. Andrews, March 19, 2020 in NationalGeographic


An injection of magma under Norris Geyser Basin may be why the region is five inches higher today than it was 20 years ago.

In northwestern Wyoming, in the center of Yellowstone National Park, a bubbling caldera is the scar of a 640,000-year-old, gargantuan volcanic eruption. The 3,472-square-mile park encompassing the caldera is filled with geologic wonderlands of sprouting geysers and effervescing pools, all ultimately driven by magma and superheated fluids churning in the rock below the surface.

One of these areas, Norris Geyser Basin to the northwest of the caldera, contains more than 500 hydrothermal features. These tempestuous geysers and pools often change from day to day, but a much larger transformation has been taking place as well: For more than two decades, an area larger than Chicago centered near the basin has been inflating and deflating by several inches in erratic bursts. In a hyperactive volcanic region like Yellowstone, the exact causes of any specific movement are difficult to pin down. But a recent study in the Journal of Geophysical Research: Solid Earth may help explain why this pocket of land has been breathing in and out.

“In all likelihood, Norris has been a center of deformation for a very long time,” says Daniel Dzurisin, a research geologist at the U.S. Geological Survey’s Cascades Volcano Observatory and one of the co-authors of the new research.

Norris Geyser Basin, Yellowstone National Park, Wyoming.
PHOTOGRAPH BY MARC MORITSCH, NAT GEO IMAGE COLLECTION

Thwaites Glacier: Why Did The BBC Fail To Mention The Volcanoes Underneath?

by D. Whitehouse, January 29, 2020 in GWPF


Scientists have known for years that subglacial volcanoes and other geothermal “hotspots” are contributing to the melting of the Thwaites Glacier. Why did the BBC fail to mention these facts in its recent report?

 

The International Thwaites Glacier Collaboration is performing some magnificent science, conducting the most ambitious fieldwork ever undertaken at the tip of what is one of the most significant glaciers on Earth. Its melting already contributes 4% of global sea level rise and there are fears that it could become unstable and contribute many metres to global sea level.

The reason for its vulnerability lies in its geology. While most of the glacier is on ground and making its way into the West Antarctic seas, Thwaites lip floats on water allowing warm water to weaken and melt it from beneath. Being one of the most difficult places in the world to reach the scientific collaboration planned for years to transport many tonnes of equipment to the glaciers front. Two weeks ago they announced they had carried out the first warm water borehole through the ice at the point where it lifts off the land and starts to be suspended by the ocean. Image courtesy British Antarctic Survey.

Big volcanic bump unlike anything seen before found on the moon

by R.G. Andrews, December 13, 2019 in NationalGeography


Scientists scouring the lunar surface for clues to past impact rates found a bonus feature that has geologists “thoroughly confused.”

Sometime after the solar system formed 4.6 billion years ago, a projectile slammed into Earth’s youthful moon and formed the 620-mile-wide basin known as the Crisium basin. No one knows exactly when this impact happened, but for decades scientists have been trying to solve the puzzle as part of a larger debate over whether the moon and, by proxy, Earth endured a period of frenzied meteor bombardment in their early histories.

Now, scientists scouring the region say they’ve spotted a crater within the basin that appears to contain pristine impact melt, a type of volcanic rock that can act like a definitive geologic clock. If future astronauts or a robot could obtain a sample and tease out its age, that may help reveal what was happening on Earth during the primordial period when life first emerged on our planet.

And, as an added bonus, the discovery comes with an intriguing mystery: The basin also holds a geologic blister the size of Washington, D.C., that’s unlike anything else seen in the solar system. As the team reports in an upcoming paper in the Journal of Geophysical Research: Planets, this volcanic lump appears to have been inflated and cracked by peculiar underground magmatic activity that the researchers can’t currently explain.

“I’m thoroughly confused by it,” says Clive Neal, an expert in lunar geology at the University of Notre Dame who was not involved with the new research.

 

Volcanism Altering Bering Sea Eco-Systems, Not Climate Change

by James  E. Kamis, July 8, 2019 in ClimateChangeDispatch


Volcanism, primarily ocean floor in nature, is the most feasible and plausible cause of recent alterations to the Bering Sea physical and biological systems, not climate change.

Since 2014, multiple changes to the Bering Sea’s physical and biological systems such as a rise in seawater temperature, sea ice melting, alteration of commercial fish migration patterns and the very sudden die-off of certain sea bird species have made front-page news.

Many scientists have been quick to attribute these supposedly ‘unnatural’ events to human-induced atmospheric warming or climate change without mentioning or giving due consideration to emissions from active volcanic features that circumvent the entire Bering Sea and populate its seafloor.

This immediate jump to a climate change cause and event effect relationship is especially difficult to understand knowing that frequently during the last five years we have been informed of yet another eruption from a Bering Sea area volcano located in either Russia, Alaska, or on the Bering seafloor.

So, let’s take a moment to review Bering Sea volcanic activity and its likely effect on the area’s physical and biological systems.

Multiple NASA Studies Confirm Bedrock Heat Flow Behind Melting Polar Ice, Not Global Warming

by James E. Kamis, August 7, 2018 in ClimateChangeDispatch

In what amounts to dissension from National Aeronautics and Space Administration (NASA) climate change policy, a series of just-released studies by working-level scientists prove that geological and not atmospheric forces are responsible for melting of Earth’s polar ice sheets.

 

NASA Greenland Study August 1, 2018

The results of this research study illustrated in Figure 2 confirm the very high geothermal bedrock heat-flow from Greenland’s massive subglacial Mantle Plume, which was originally documented in four previous research studies (see herehere, here, and here).

A geothermal heat-flow cause for the melting of Greenland’s ice sheet has been the focus of numerous Climate Change Dispatch articles (see here, here, here, and here).

 

 

Ship spies largest underwater eruption ever

by Roland Pease, May 21, 2019 in Science


Last week, Marc Chaussidon, director of the Institute of Geophysics in Paris (IPGP), looked at seafloor maps from a recently concluded mission and saw a new mountain. Rising from the Indian Ocean floor between Africa and Madagascar was a giant edifice 800 meters high and 5 kilometers across. In previous maps, there had been nothing. “This thing was built from zero in 6 months!” Chaussidon says.

His team, along with scientists from the French national research agency CNRS and other institutes, had witnessed the birth of a mysterious submarine volcano, the largest such underwater event ever witnessed. “We have never seen anything like this,” says IPGP’s Nathalie Feuillet, leader of an expedition to the site by the research vessel Marion Dufresne, which released its initial results last week.

The quarter-million people living on the French island of Mayotte in the Comoros archipelago knew for months that something was happening. From the middle of last year they felt small earthquakes almost daily, says Laure Fallou, a sociologist with the European-Mediterranean Seismological Centre in Bruyères-le-Châtel, France. People “needed information,” she says. “They were getting very stressed, and were losing sleep.”