Archives par mot-clé : Methane

Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event

by Vasilii V. Petrenko et al., August 23, 2017 in Nature


Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates8, permafrost9 and methane trapped under ice10) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas–Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

Après le pétrole, le gaz américain comme nouveau “game changer” ?

by Patrice Geoffron, 23 octobre 2017 in Le CerclesdesEconmistes, Boursorama


 (…) le gaz américain pourrait bouleverser les équilibres mondiaux, avec des conséquences non moins drastiques que pour le pétrole. Les ressources américaines de gaz sont abondantes et, en juillet 2017, le prix interne a atteint son point le plus bas depuis 12 ans, augurant de sa compétitivité à l’export.

…Next Generation of Fossil Fuels…

by Donn Dears, August 2017


As noted in my article four years ago, Japan has a program for producing natural gas from methane hydrates located near its coast, and predicts it will be successful by 2019.

Most people believe that Japan’s objective is highly optimistic, but it does shed light on the efforts currently underway to develop the technology for extracting natural gas from methane hydrates.

Réserves de gaz dans le monde

by Connaissances des Energies, 17 février 2015


Les cinq pays disposant des plus importantes réserves de gaz au monde sont :

Methane Emissions: from blind spot to spotlight

by The Oxford Institute for Energy Studies, July 2017


Very comprehensive file, 39 pages .pdf

Methane emissions influence but do not undermine the environmental case for gas. If the industry can build on the progress to date and deliver a clearer picture on the level of emissions and actions to address them, the arguments for gas displacing coal in power generation and oil products in transport become much stronger.

The Vostok Ice Core: Temperature, CO2 and CH4

by Euan Means, December 12, 2014


In their seminal paper on the Vostok Ice Core, Petit et al (1999) [1] note that CO2 lags temperature during the onset of glaciations by several thousand years but offer no explanation. They also observe that CH4 and CO2 are not perfectly aligned with each other but offer no explanation. The significance of these observations are therefore ignored. At the onset of glaciations temperature drops to glacial values before CO2 begins to fall suggesting that CO2 has little influence on temperature modulation at these times.

See also here

CHINA CLAIMS METHANE HYDRATES BREAKTHROUGH MAY LEAD TO GLOBAL ENERGY REVOLUTION

by CNN Money, May 21, 2017 in GWPF


The fuel-hungry country has been pursuing the energy source, located at the bottom of oceans and in polar regions, for nearly two decades. China’s minister of land and resources, Jiang Daming, said Thursday that the successful collection of the frozen fuel was “a major breakthrough that may lead to a global energy revolution,” according to state media.

Experts agree that flammable ice could be a game changer for the energy industry, similar to the U.S. shale boom. But they caution that big barriers — both technological and environmental — need to be cleared to build an industry around the frozen fuel, which is also known as gas hydrate.

Are methane seeps in the Arctic slowing global warming?

by Randall Hayman, May 8, 2017, in Science


Good news about climate change is especially rare in the Arctic. But now comes news that increases in one greenhouse gas—methane—lead to the dramatic decline of another. Research off the coast of Norway’s Svalbard archipelago suggests that where methane gas bubbles up from seafloor seeps, surface waters directly above absorb twice as much carbon dioxide (CO2) as surrounding waters. The findings suggest that methane seeps in isolated spots in the Arctic could lessen the impact of climate change.