Archives par mot-clé : Sun

Why A ‘Super’ Grand Solar Minimum Is Upon Us

by Cap Allon, November 19, 2018 in PrincipiaScientificInternational


Professor Valentina Zharkova explains and confirms why a “Super” Grand Solar Minimum is upon us: “If the world was looking for an Epiphany moment, this should be it.”

Professor  Zharkova gave a presentation of her Climate and the Solar Magnetic Field hypothesis at the Global Warming Policy Foundation in October, 2018. Even if you believe the IPCC’s worst case scenario, Zharkova’s analysis blows any ‘warming’ out of the water.

Lee Wheelbarger sums it up: even if the IPCC’s worst case scenarios are seen, that’s only a 1.5 watts per square meter increase. Zharkova’s analysis shows a 8 watts per square meter decrease in TSI to the planet.

The information she unveiled should shake/wake you up. Zharkova was one of the few that correctly predicted solar cycle 24 would be weaker than cycle 23 – only 2 out of 150 models predicted this. Her models have run at a 93% accuracy and her findings suggest a SuperGrand Solar Minimum is on the cards beginning 2020 and running for 350-400 years.

The Sun’s Weather Cycle May Start in ‘Tsunamis,’ End with ‘Terminators’

by Passant Rabbie, July 31, 2019 in Space


A tsunami of plasma rushes through the sun before a new sunspot cycle begins.

Astronomers may have finally figured out what causes the sun’s 11-year cycle of activity, and it involves a “tsunami” of magnetic fields.

The sun, like other stars, goes through a cycle marked by a change in magnetic activity, levels of radiation, and the number and size of sunspots. While our sun’s 11-year cycle was discovered more than a century ago, predicting exactly when one cycle ends and a new one begins has been an ongoing challenge.

A pair of related studies have mapped out the sun’s activity over the course of 140 years, looking for clues about the solar cycle that are visible on the surface. By looking at the way bright flashes of ultraviolet light migrate across the sun’s surface, the researchers discovered that the sun’s mysterious 11-year cycle may be marked by a “terminator” event that ends one cycle and a “tsunami” of magnetic fields that initiates a new one. Those bright flickers of ultraviolet light and the sun’s magnetic fields appear to drive the cycle itself, and monitoring those flashes could help scientists predict when a new cycle will begin.

Study: Clouds, Solar Cycles Play Major Role In Climate Change

by  G. Lloyd, July 15, 2010 in ClimateChangeDispatch


Sand deposits near the Gobi Desert in China may seem a strange place to look for evidence that cosmic rays can control how clouds are formed and the impact they have on Earth’s climate.

But Japanese scientists have measured the size of sand grains and the distance they traveled 780,000 years ago to add a new level of understanding to one of the questions that continue to baffle climate science: clouds.

The findings, published in Nature, point to big trends in natural variation of past and future climate that operate apart from greenhouse gas levels.

The study adds weight to a contentious theory by Danish researcher Henrik Svensmark, of the Danish National Space Institute in Copenhagen, which uses cosmic rays and clouds to question the sensitivity of climate to carbon dioxide in the atmosphere.

Current Solar Cycle Will Be First To Finish Below Normal In 80 Years, Weakest In Close To 200 Years

by F. Bosse & F. Vahrenbolt, June 22, 2019 in NoTricksZone


In May 2019 our sun was below-normal active again. The solar sunspot number (SSN) was 10.1, which is only 52% of the mean value in the evaluated cycle month no. 126 since the start of Cycle No. 24 began in December 2008.

It should be noted that the number of cycles that lasted this long is decreasing. In the previous month we reported on cycles 21, 18, 16, 15, 8 dropping out because they were shorter in total, and now SC 17 is getting added. Next month month SC 7 is will fall as well. The mean value thus becomes less meaningful as the end of the cycle approaches. But out of habit, we want to keep it nevertheless as comparison.

The activity in the past month was shifted very asymmetrically to the solar northern hemisphere, the southern hemisphere was spotless throughout the whole month. The solar north saw spots only on 15 days.

 

Fig. 2: Sunspot activity of the individual cycles since the beginning of cycle 1 in the year 1755. The numbers are computed by adding up the monthly differences of the observed cycles to the mean value, up to the current cycle month no. 126.

 

Sun spotless for 33 days straight – airline travelers getting dosed with up to 70 times more radiation

by A. Watts, June 21, 2019 in WUWT


Are we in a solar grand minimum? We’ve seen this before, but now predictions are for an extremely weak solar cycle ahead.

Today is the summer solstice in the northern hemisphere. The sun has been without a single observable sunspot now for over a month – 33 days according to NOAA and SIDC data.

 

Daily observations of the number of sunspots since 1 January 1977 according to Solar Influences Data Analysis Center (SIDC). The thin blue line indicates the daily sunspot number, while the dark blue line indicates the running annual average. The recent low sunspot activity is clearly reflected in the recent low values for the total solar irradiance. Compare also with the geomagnetic Ap-index. Data source: WDC-SILSO, Royal Observatory of Belgium, Brussels. Last day shown: 31 May 2019. Last diagram update: 1 June 2019 . [Courtesy climate4you.com]

..

New Proxy Data Show Northern Europe Weather Variability In Sync With Natural Factors: Solar Activity, Oceanic Cycles

by J. Goslin in P. Gosselin, June 1, 2019 in NoTricksZone


Another new paper, which of course will be ignored by the government-funded IPCC because it contradicts claims CO2 drives climate, shows that natural factors dominated the earth’s climate variability.

A team of scientists led by Jerome Goslin have published a paper titled Decadal variability of north-eastern Atlantic storminess at the mid-Holocene: New inferences from a record of wind-blown sand, western Denmark in the journal Global and Planetary Change, suggesting climate variability is driven naturally.

Image: NASA, public domain

Climate change driven by solar and oceanic cycles

Not surprisingly, as evidenced by hundreds of other publications (which are entirely ignored by the IPCC), climate variability is indeed tied to solar activity and “internal atmospheric and oceanic modes”.

Tertiary hyperthermal events: precursors of the current situation?

by A. Jacobs & A. Préat, May 20, 2019 in SSRN.Elsevier


The focus of this study is based on a detailed analysis of the hyperthermal events of the

Paleocene / Eocene limit of 56 Ma and the lower Eocene (for the 54-52 Ma interval, Figure 1).

This example will show that the Earth has experienced many times much higher temperatures

than today, with warmer, sometimes more acidic oceans and an atmosphere much richer in CO2

(or CH4) than the current one. Are these past events precursors of the current situation?

Keywords: global warming, climate change, Paleocene, Eocene, hyperthermal events

‘Gimme Gimme Shock Treatment’

by Joe Bastardi, May 17, 2019 inThePatriotPost


Apparently, the new strategy to fight climate change is shock therapy. It’s like today’s environmental crusaders are channeling the Ramones song “Gimme Gimme Shock Treatment.” Here are some illustrations.

Shock treatment is for extreme measures. But take, for example, this Dr. Willie Soon plot of solar irradiance (a measure of solar energy) vs. water vapor:

Water vapor is the number-one greenhouse gas. So it’s no secret what temperatures do when water vapor increases.

Current Solar Cycle Among Weakest On Record. Potentially Cloud-Seeding Cosmic Radiation Near Highest Level Since

by Prof. F. Vahrenholt and F. Bosse, May 7, 2019 in NoTricksZone


If we speak of an average of the last 23 cycles in the months of the minimum, our only significant energy source at the center of the solar system was below average active last month as well.

The sunspot number (SSN) was 9.1, which was thus only 42% of the average of the cycles for month no. 125. Some cycles (No. 21, 18, 16, 15, 8 ) were already completed in month no. 125.

Fig. 1: The monthly sunspot activity of the current solar cycle (SC 24) since December 2008 (red) compared to the mean value of all previously systematically observed cycles since the beginning of SC 1 in March 1755 (blue) and the very similar SC 5 (black).

Figure 1 clearly shows that the latest cycle was quite below-normal, especially at the beginning and after the second peak which had an SSN of over 140 towards the end. Since February 2014 (the maximum of the entire cycle 24 with SSN = 146 in cycle month 63), it only reached 2/3 of the average activity.

What are the effects? The total radiation (TSI for total solar irradiance) is only moderately influenced:

Un mécanisme russe pour expliquer le réchauffement global

par Jean N., 4 mai 2019 in Science-Climat-Energie


Dans une récente publication[1] de 2019, l’équipe russe de G.A. Zherebtsov présente un mécanisme permettant d’expliquer le réchauffement global. Ce mécanisme, basé sur une série d’observations, ne fait pas intervenir le taux de CO2 atmosphérique mais les rayons cosmiques solaires ainsi que le champ électromagnétique terrestre. Les chercheurs qui ont pensé à ce mécanisme (inconnu du GIEC) font tous partie de l’institut de Physique Terrestre et Solaire de la Branche Sibérienne de l’Académie Russe des Sciences (Irkutsk, Russie). Si le mécanisme de l’équipe de Zherebtsov est correct, on pourrait alors se passer de l’hypothèse de l’effet de serre radiatif qui, comme vous le savez peut-être, pose certains problèmes (voir ici, ici et ici). Le but du présent article est simplement de présenter ce mécanisme et de montrer par la même occasion que la science du climat est loin d’être dite.

1. Observations réalisées le 7 novembre 2004

Les chercheurs russes ont d’abord constaté qu’à certaines latitudes il y a un lien assez fort entre le flux de rayons cosmiques solaires (RCS) et la température de la troposphère. Ceci est par exemple bien visible dans un évènement qui a débuté le 7 novembre 2004 au niveau des hautes latitudes de l’hémisphère nord (55°N-65°N). Ce jour-là, le flux de RCS était particulièrement fort d’environ 3 ordres de grandeur plus élevé par rapport à la normale (Figure 1a). Une tempête géomagnétique s’est ensuite déclarée le jour suivant et a duré au moins 5 jours (il s’agit de fluctuations brusques et intenses du magnétisme terrestre qui proviennent d’une perturbation de l’ionosphère par l’activité solaire). Ceci est bien visible sur le tracé des indices géomagnétiques AE (Figure 1b) et Dst (voir aussi ici), indices obtenus par certaines stations de mesure placées au sol et réparties en divers endroits de la planète (Figure 1c). Il existe de nombreux indices géomagnétiques et il n’est pas nécessaire d’être un spécialiste pour comprendre la suite du présent article. Il faut simplement retenir que le champ magnétique terrestre est perturbé les jours suivant l’arrivée des RCS. Voyons maintenant si tout ceci peut avoir un effet sur la température de la basse troposphère.

Figure 4. Diagramme présentant le mécanisme de Zherebtsov. Source : Zherebtsov et al. (2019) J Atm Solar Terrestrial Physics 182:217–222 (traduit de l’anglais).

Solar variability manifestations in weather and climate characteristics

by Zherebtsov G.A. et al., April 2019 in J.Atm&SolarTerrestrialPhysics


Abstract

We discuss the issues of primary importance to understand the nature of climate changes in the 20th century and main physical processes responsible for these changes and present a physical model for the solar activity (SA) effect on climate characteristics. A key concept of this model is the heliogeophysical disturbance effect on the Earth climate system parameters driving the long-wave radiation flux moving away from the Earth out into space in high-latitude regions. We address the solar activity effect on the changes in the temperature of the atmosphere and of the World Ocean. The aa–index of the geomagnetic activity (GA) was used as an SA proxy index. We discuss the results of analyzing the regularities and peculiarities of the tropospheric and sea surface temperature (SST) responses to both separate heliogeophysical disturbances and long-term changes in solar and geomagnetic activity. The structure of the tropospheric and SST temperature responses was shown to feature a spatial time irregularity. We revealed the regions, where long-term SST changes are determined mainly by SA variations.

Indications Point To Upcoming Solar Cycle 25 Being Among The Weakest In 200 Years

by F. Bosse and F. Vahrenholt, March 29, 2019 in NoTricksZone


The sun was also very sub-normally active in February. Although we are in the middle of the minimum, the sunspot number of 0.8 for the 123rd month into the cycle is very low. On 26 days of the month no spots were visible, only on 2 days was there a little, symmetrically distributed over both solar hemispheres.The only exciting question currently: When will the minimum be finished and will solar cycle 25 begin? Although 6 spots of the new cycle were already visible in February with a significantly higher resolution, estimates are difficult.March again was dominated by some spots of the “old” SC24.  The rule: “weaker cycles often last longer than stronger cycles” could hold.

Figure 2: The strength of the sunspot activity of each cycle in comparison. The numbers in the diagram are obtained by adding up the monthly deviations between the observed values and the mean value (blue in Fig.1) up to the current 123rd cycle month.

Figure 2 shows that five cycles (No. 8, 15, 16, 18, 22) did not have a month 123 at all. Instead the following cycle started. In this respect, the picture is now somewhat distorted towards the end of the cycle.

See also here in GWPF

Monster solar storm that hit Earth discovered in the past

by Anthony Watts, March 12, 2019 in WUWT


Something this big today would surely fry electrical grids, GPS, and communications. It may be bigger than the Carrington Solar event of 1859.

Scientists have found evidence of a huge blast of radiation from the Sun that hit Earth more than 2,000 years ago. The result has important implications for the present, because solar storms can disrupt modern technology.

The team found evidence in Greenland ice cores that the Earth was bombarded with solar proton particles in 660BC. The event was about 10 times more powerful than any since modern instrumental records began.

The Sun periodically releases huge blasts of charged particles and other radiation that can travel towards Earth.

The particular kind of solar emission recorded in the Greenland ice is known as a solar proton event (SPE). In the modern era, when these high-energy particles collide with Earth, they can knock out electronics in satellites we rely on for communications and services such as GPS.

Henrik Svensmark: Force Majeure – The Sun’s Role In Climate Change (PDF)

in GWPF, March 11, 2019


London, 11 March: A new report from the Global Warming Policy Foundation reveals that the solar influence on climate is is much larger than is generally recognised.

The report, by Professor Henrik Svensmark of the Danish National Space Institute, outlines some of the remarkable correlations between solar activity and past climate changes. It also shows that the output of the Sun alone – the so-called total solar irradiance – cannot explain them.

“Changes in total solar irradiance are actually quite small”, says Professor Svensmark. “They would have to be nearly 10 times larger to explain how the oceans warm and cool over the 11-year solar cycle.”

New research suggests that other mechanisms can amplify the effect of solar activity. The New report reviews the possible candidates, concluding that the most likely of these is the effects of galactic cosmic rays on cloud formation. This idea is plausible in theory and has received substantial empirical support in recent years.

However, Professor Svensmark says that insufficient attention is being paid to this research area:

“Galactic cosmic rays seem to be very important drivers of the Earth’s climate. But they are mostly being ignored at the moment because they are seen as distracting from conventional global warming research. Science needs to do better if we want to make progress in understanding the actual impact of natural factors of climate change.”

Henrik Svensmark: Force Majeure – The Sun’s Role In Climate Change (PDF)

About the author
Prof Henrik Svensmark is a physicist and a senior researcher in the Astrophysics and Atmospheric Physics Division of the National Space Institute (DTU Space) in Lyngby, Denmark. Svensmark presently leads the Sun–Climate Research group at DTU Space.

A Month Without Sunspots

by Dr Tony Phillips, March 6, 2019 in SpaceWeatherArchive


March 1, 2019: There are 28 days in February. This year, all 28 of them were spotless. The sun had no sunspots for the entire month of Feb. 2019. This is how the solar disk looked every day:

How does this affect us on Earth? The biggest change may be cosmic rays. High energy particles from deep space penetrate the inner solar system with greater ease during periods of low solar activity. Indeed, NASA spacecraft and space weather balloons are detecting just such an increase in radiation. Cosmic rays can alter the flow of electricity through Earth’s atmosphere, trigger lightning, potentially alter cloud cover, and dose commercial air travelers with extra “rads on a plane.”

As February ended, March is beginning … with no sunspots. Welcome to Solar Minimum!