Archives de catégorie : climate and geology

Eocene Climatic Optima: Another Clean Kill of Carbon Dioxide-Driven Climate Change Hypothesis?

by David Middleton, September 30, 2019 in WUWT


Key points

  1. The Eocene was, on average, 4–15 °C warmer than today.
  2. Atmospheric CO2 was very likely in the 450-600 ppm range.
  3. Modern climate models would require 4,500 ppm CO2 to simulate the Eocene temperature range;
  4. And/or a climate sensitivity of 4-8 °C per doubling;
  5. And/or “that other climate forcings were stronger than previously assumed”.

They totally missed the most obvious reason why just about every effort to gin up a paleo example of CO2-driven climate change falls apart: Atmospheric CO2 is not a primary driver of climate change over geologic time. This wouldn’t mean that it isn’t a greenhouse gas or that it has no effect on temperature. It would simply mean that it was a relatively minor climate driver, like volcanic eruptions.

At some point over the past 30 years or so, the assumption that CO2 drives modern climate change has become a paradigm. And I think we have seen a rare failure in the application of the geologic principle of Uniformitarianism.

Uniformitarianism is often incorrectly cited as the reason geologists were slow to accept plate tectonics, the impact theory of the K-Pg extinction and why the hypotheses for a Younger Dryas impact and abiotic oil are generally unaccepted. However, Uniformitarianism may be why a CO2-driven climate paradigm appears to have come into wide acceptance, at least in academia.

Figure 3a. Marine pCO2 (foram boron δ11B, alkenone δ13C), atmospheric CO2 from plant stomata (green and yellow diamonds with red outlines), Mauna Loa instrumental CO2 (thick red line) and Cenozoic temperature change from benthic foram δ18O (light gray line).

 

Switching on the Atlantic heat pump

by Stockholm University, August 27, 2019 in WUWT/fromNature


34 million years ago the warm ‘greenhouse climate’ of the dinosaur age ended and the colder ‘icehouse climate’ of today commenced. Antarctica glaciated first and geological data imply that the Atlantic meridional overturning circulation, the global ocean conveyor belt of heat and nutrients that today helps keep Europe warm, also started at this time. Why exactly, has remained a mystery.

“We have found a new trigger to explain the start-up of the Atlantic current system during the greenhouse-icehouse climate transition: During the warm climate, buoyant fresh water flooded out of the Arctic and prevented the ocean-sinking that helps power the conveyor. We found that the Arctic-Atlantic gateway closed due to tectonic forces, causing a dramatic increase in North Atlantic salinity. This caused warming of the North Atlantic and Europe, and kickstarted the modern circulation that keeps Europe warm today,” says David Hutchinson, researcher at the Department of Geological Sciences, Stockholm University, and lead author of the article published in Nature Communications.

The team of scientists, from the Bolin Centre for Climate Research, used a combination of geophysical data and climate modelling to show that the freshwater transport through the Arctic-Atlantic gateway plays a critical role in controlling the overturning circulation.

‘MASSIVE POOL’ OF METHANE HIDDEN DEEP BENEATH EARTH’S SURFACE DISCOVERED BY SCIENTISTS

by Hannay Osborne, 21 August 2019 in Newsweek from PNAS


A huge source of methane has been discovered deep beneath the surface of Earth, sitting between the upper mantle and lower oceanic crust. The discovery is important as it could provide an insight into the hydrothermal vents that may have helped the planet’s first life emerge. Researchers also argue it could be a source of hydrogen and methane on other planets in the solar system—”even those where liquid water is no longer present.”

The ‘abiotic’ methane—methane that is not formed with organic matter—was found locked inside rocks. Researchers from the Woods Hole Oceanographic Institution (WHOI), Massachusetts, took 160 samples from hydrothermal sites across the globe, including the Mid-Atlantic Ridge, Guaymas Basin, the East Pacific Rise and the Mid-Cayman Rise. After analyzing them with a laser-based microscope, they found that almost all contained pockets of methane.

In their study, published in the journal PNAS, the team says this could be the biggest source of abiotic methane in the world. This reservoir, they say, could account for more methane than was in Earth’s atmosphere before the onset of the industrial era.

The methane appears to have formed by reactions between trapped water and olivine, a group of rock-forming minerals found in the planet’s subsurface. When seawater moves through the deep ocean crust, it mixes with magma-hot olivine. When the mineral cools, the water is trapped inside and a chemical reaction takes place, leading to the formation of hydrogen and methane.

Traditionally, we think of methane—a potent greenhouse gas—as forming when organic material breaks down. When it is emitted into the atmosphere, it has a warming effect far greater than carbon dioxide, although it is far shorter-lived than the latter, disappearing after about a decade.

However, methane is also known to exist on the seafloor. It is released through deep-sea vents—geothermally heated fissures on Earth’s crust. In 2016, scientists with the Ocean Exploration Trust discovered over 500 methane spewing vents off the west coast of the U.S.

However, the source of the seafloor methane has remained something of a mystery. “Identifying an abiotic source of deep-sea methane has been a problem that we’ve been wrestling with for many years,” study author Jeffrey Seewald, a senior scientist at WHOI, said in a statement.

Lead author Frieder Klein added: “We were totally surprised to find this massive pool of abiotic methane in the oceanic crust and mantle. Here’s a source of chemical energy that’s being created by geology.”

Fire from Ice: A Case Study of Methane Hydrates in the Eastern Mediterranean

by E. Zogopoulos, August 13, 2019 in EnergyIndustryeView


Methane hydrates is a source of methane gas which is found in crystalline formation that look like ice and can be found in permafrost regions or under the sea in outer continental margins.

We are living in times of fundamental changes in the energy landscape, driven by uncertainty, unstable energy prices, disruptive technologies, geopolitical gambits and subsequent attempts for regulatory interventions. While governments and corporations are trying to adjust to the new landscape and guess the name of the game, they need reliable sources of power to make predictions and critical strategic decisions.

Historical & geopolitical context

The era of hydrocarbons does not seem to be over, but there might be some indications in the horizon. We like it or not, they will still account for the vast majority of the global energy mix by 2050, despite significant breakthroughs in renewables. Many new players come in the energy market with the elusive promise of additional and cheaper resources and the will to disrupt the game – and eventually make money out of it.

Furthermore, the growing tension between public policy and private initiatives has been boiling and has been more than just an understatement for decades. The under-investment that we observe now due to lower prices and risks could become chronic and the global output of energy resources could lead to secure supply deficit.

Gas is believed to gradually replace coal, which is a source of distress for some existing players. The world is facing a proliferation of Liquified Natural Gas (LNG) supplies that are already impacting gas markets and competing with pipeline gas. Some of the largest and most significant consuming nations are contemplating reform or unbundling, which could mean some take or pay contracts become stranded and an increasing oil price is likely to reinforce the price arbitrage between long-term and spot pricing.

There is undeniably a constant call for further investments in renewables, but lower oil, gas and coal prices and increased efficiency (or very effective lobbying) might slow this down. The global players do take into consideration the call for renewables (like solar and wind energy), either for publicity purposes or even because they do believe that this could be the future.

 

Location of sampled and inferred methane hydrate occurrences in oceanic sediment of outer continental margins and permafrost regions. Most of the recovered methane hydrate samples have been obtained during deep coring projects or shallow seabed coring operations. Most of the inferred methane hydrate occurrences are sites at which bottom simulating reflectors (BSRs) have been observed on available seismic profiles. The methane hydrate research drilling projects and expeditions reviewed in this report have also been highlighted on this map. (Map courtesy of Timothy S. Collett, USGS)

Ten years of icy data show the flow of heat from the Arctic seafloor

by US Geological Survey, August 8, 2019 in ScienceDaily


Scientists have taken the temperature of a huge expanse of seafloor in the Arctic Ocean in new research by the U.S. Geological Survey and the Geological Survey of Canada. The study, published in the Journal of Geophysical Research, is accompanied by the release of a large marine heat flow dataset collected by the USGS from an ice island drifting in the Arctic Ocean between 1963 and 1973. These never-before-published data greatly expand the number of marine heat flow measurements in the high Arctic Ocean.

Marine heat flow data use temperatures in near-seafloor sediments as an indication of how hot Earth’s outer layer is. These data can be used to test plate tectonic theories, provide information on oil and gas reservoirs, determine the structure of rock layers and infer fluid circulation patterns through fractures in those rock layers.

La hausse du niveau de la mer accélère-t-elle l’érosion des côtes? (1/3)

by Y. Battiau-Queney, 15 août 2019 in ScienceClimatEnergie


Il est courant de lire et d’entendre que la hausse du niveau de la mer, l’une des conséquences les plus manifestes du réchauffement climatique, va accélérer l’érosion de nos côtes, menacer de submersion marine de vastes zones littorales urbanisées et faire disparaître nombre d’îles basses habitées. Ces craintes sont-elles justifiées? Comme un consensus ne vaut pas vérité scientifique, on va essayer de démêler le vrai du faux en partant de l’état des connaissances scientifiques sur la hausse du niveau de la mer et analyser ses effets possibles sur les processus d’érosion des côtes.

 

1/ Que sait-on de la hausse du niveau de la mer ?

1.1. État des connaissances sur les variations passées et présentes du niveau de la mer à l’échelle mondiale

Une bonne synthèse récente sur les causes et l’ampleur de la hausse du niveau de la mer se trouve dans Cazenave et Le Cozannet (2014). On y trouvera une très abondante bibliographie antérieure à 2013. Les méthodes utilisées par les scientifiques pour évaluer la tendance moyenne de l’élévation du niveau de la mer dépendent de la période considérée. A l’échelle du Pléistocène (1 800 000 ans) et de l’Holocène (10 000 ans) on dispose d’archives sédimentologiques (repérage d’anciennes plages “soulevées”, analyse de niveaux tourbeux recouverts de sédiments marins, stratigraphie et datation de récifs coralliens …) et de données archéologiques, particulièrement riches sur les côtes méditerranéennes. On sait qu’à plusieurs reprises, pendant les phases interglaciaires du Pléistocène, le niveau de la mer a été supérieur à l’actuel de 5 à 10 m au moins (Planton et al., 2015). À partir du milieu du 19ème siècle, on utilise les données souvent précises des marégraphes installés principalement dans les ports de l’hémisphère nord. Elles fournissent les altitudes relatives du niveau de la mer par rapport aux terres émergées. Depuis 1993, les données satellitaires fournissent des altitudes absolues du niveau de la mer par rapport à l’ellipsoïde terrestre de référence et permettent d’avoir une vision beaucoup plus globale des variations du niveau des océans à toutes les latitudes et longitudes.

Tableau 1 : variations du niveau de la mer indiquées par les marégraphes (sources: SONEL et GLOSS; Wöppelmann et al., 2014 pour Marseille) (ND= non documenté). Les données dans les colonnes sont exprimées en mm/an.

Anthropocene: “it will be the rocks that have the final say” about this fake word.

by David Middleton, August 7, 2019 in WUWT


The fake geologic epoch known as the “Anthropocene” just won’t die… It’s like a zombie from a bad science fiction movie.

Despite being populated with activists like Naomi Oreskes, it has taken the AWG ten years to vote on what their conclusion will be and to start looking for evidence to support their conclusion… And the vote wasn’t unanimous.

Here’s where the Anthropocene dies…

 

Figure 4 from Finney & Edwards.  “Workflow for approval and ratification of a Global Standard Stratotype Section and Point (GSSP) proposal. Extensive discussion and evaluation occurs at the level of the working group, subcommission, and International Commission on Stratigraphy (ICS) Bureau. If approved at these successive levels, a proposal is forwarded to the International Union of Geological Sciences (IUGS) for ratification. This process is also followed for other ICS decisions on standardization, such as approval of names of formal units, of revisions to the units, and to revision or replacement of GSSPs.”

Slowest start to Atlantic Hurricane season since 2004

by Anthony Watts, August 7, 2019 in WUWT


Watching the current maps and models, it appears the 2019 Atlantic Hurricane Season is off to a slow start. For people that the depend on disaster porn (climate alarmists, media) that means no weather events to claim as being climate driven.

 

 

Graph of tropical storm and hurricane frequency, Atlantic region, monthly, based on data from 1851-2017. Data from NOAA at http://www.aoml.noaa.gov/hrd/tcfaq/E17.html Landsea, Chris (contributor from the NHC). “Total and Average Number of Tropical Cylones by Month (1851-2017)”. aoml.noaa.gov. National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory. Archived from the original on September 1, 2018.  Graph from RCraig.

Relation entre l’ activité sismique dans les océans et le réchauffement global (août 2019)

c/o Luc Trullemans,  août 2019 in PublicMétéo


Introduction

Une forte relation à été observée ces dernières années entre de l’activité sismique dans les océans et le récent réchauffement climatique  (CSARGW ,Correlation of Seismic Activity and Recent Global Warming) .

Cette corrélation entre de l’activité sismique océanique et le réchauffement climatique avait déjà été remarquée de 1979 à 2016 (CSARGW16) et vient d’être confirmée jusqu’en 2018.

Dans cette note, on démontre que  l’activité sismique dans les océans ( =>tremblements de terre de magnitude 4-6) provoque des flux géothermiques sous-marins et ont une relation importante avec les fluctuations de la température globale des océans (SST) et de la température globale de l’air (GT).

Ceci avance une nouvelle l’hypothèse selon laquelle l’activité sismique océanique pourrait être  un des paramètres  les plus importants dans la variation de la température globale.

 

 

Volcanism Altering Bering Sea Eco-Systems, Not Climate Change

by James  E. Kamis, July 8, 2019 in ClimateChangeDispatch


Volcanism, primarily ocean floor in nature, is the most feasible and plausible cause of recent alterations to the Bering Sea physical and biological systems, not climate change.

Since 2014, multiple changes to the Bering Sea’s physical and biological systems such as a rise in seawater temperature, sea ice melting, alteration of commercial fish migration patterns and the very sudden die-off of certain sea bird species have made front-page news.

Many scientists have been quick to attribute these supposedly ‘unnatural’ events to human-induced atmospheric warming or climate change without mentioning or giving due consideration to emissions from active volcanic features that circumvent the entire Bering Sea and populate its seafloor.

This immediate jump to a climate change cause and event effect relationship is especially difficult to understand knowing that frequently during the last five years we have been informed of yet another eruption from a Bering Sea area volcano located in either Russia, Alaska, or on the Bering seafloor.

So, let’s take a moment to review Bering Sea volcanic activity and its likely effect on the area’s physical and biological systems.

More ‘reactive’ land surfaces cooled the Earth down

by Charles the moderator , July 6, 2019 in WUWT


Higher reactivity could explain temperature drop before last ice age

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

From time to time, there have been long periods of cooling in Earth’s history. Temperatures had already fallen for more than ten million years before the last ice age began about 2.5 million years ago. At that time the northern hemisphere was covered with massive ice masses and glaciers. A geoscientific paradigm, widespread for over twenty years, explains this cooling with the formation of the large mountain ranges such as the Andes, the Himalayas and the Alps. As a result, more rock weathering has taken place, the paradigm suggests. This in turn removed more carbon dioxide (CO2) from the atmosphere, so that the ‘greenhouse effect’ decreased and the atmosphere cooled. This and other processes eventually led to the ‘ice Age’.

In a new study, Jeremy Caves-Rugenstein from ETH Zurich, Dan Ibarra from Stanford University and Friedhelm von Blanckenburg from the GFZ German Research Centre for Geosciences in Potsdam were able to show that this paradigm cannot be upheld. According to the paper, weathering was constant over the period under consideration. Instead, increased ‘reactivity’ of the land surface has led to a decrease in CO2 in the atmosphere, thus cooling the Earth. The researchers published the results in the journal Nature.

Scientist Spots High Geothermal Heat Flux In East Greenland – ‘Dramatic Consequences For Ice Basal Melting’

by K. Richard, July 5, 2019 in NoTricksZone


Geothermal heat flux can foment upper mantle temperature anomalies of 800–1000 °C, and these extreme heat intensities have been found to stretch across 500 km of central-east Greenland. This could result in “a significant contribution of ice melt to the ice-drainage system of Greenland” (Artemieva et al., 2019).

Evidence of more than 100,000 formerly or currently active volcanic vents permeate the Earth’s sea floor (Kelley, 2017).

Active volcanoes spew 380°C sulfuric acid and “metal-laden acidic fluids” into the bottom waters of the world ocean on a daily basis. In other words, literal ocean acidification is a natural phenomenon.

The carbon dioxide concentrations present in these acidic floods reach “astounding” levels, dwarfing the potential for us to even begin to appreciate the impact this explosive geothermal activity has on the Earth’s carbon cycle (Kelley, 2017).

About Antarctica

by Thongchai Thailand, June 27, 2019


THIS POST IS A CRITICAL EXAMINATION OF VARIOUS CLAIMS MADE BY CLIMATE SCIENCE ABOUT THE IMPACT OF CLIMATE CHANGE ON ANTARCTICA AND OF THE EVIDENCE FOR AGW CLAIMED TO BE FOUND IN DATA FROM ANTARCTICA.
IT IS BASED ON THE ANTARCTICA SECTION OF A LECTURE BY JAMES EDWARD KAMIS  [LINK]
  1. Antarctica is broken into two pieces. On the west is West Antarctica that constitutes 20% of Antarctica. The upper portion of West Antarctica forms a thumb. It’s called the Antarctic Peninsula. The remaining 80% of Antarctica is called East Antarctica. The right image shows a NASA graph that reflects ice melting on the entire continent from 1995 to 2015. It is here shown as a proxy for ice melting denominated as millimeters of sea level rise due to meltwater. Note that West Antarctica, inclusive of the Antarctic Peninsula, the 20% portion of the continent, accounts for all of the continent’s ice loss. East Antarctica, the much larger 80%, is actually gaining ice. This melt graph was created in 2015 by Dr. H. Jay Zwally is Chief Cryospheric Scientist at NASA’s Goddard Space Flight Center and Project Scientist for the Ice Cloud and Land Elevation Satellite.
  2. The lopsided melt data raises this question: why is all the melt concentrated in 20% of the continent while the other 80% gains ice? The answer is found in the University of Washington 50-year average surface temperature map. It was generated in 2009 by Dr. Eric Steig – Earth and Space Sciences – University of Washington. It’s validity was hotly debated for many years. However, since that time, it has been proven correct by two more modern studies. NASA’s skin temperature map and British Antarctic Survey’s temperature map.
  3. The surface temperature map that Dr. Steig made represents the temperature of the upper few meters of ice and sediment and does not reflect the temperature of the atmosphere…

More Failed Predictions: May Was The Second Wettest Month In US History

by Chriss Street, June 28, 2019 in ClimateChangeDispatch


National Oceanic and Atmospheric Administration reported the month of May was the second wettest and temperatures were in the bottom-third for its 125-year US history.

The 2010 publication titled, ‘A Global Overview Of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests’, was accepted by the Obama administration as scientific evidence that climate change had made the Earth:

“…increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited.”

But NOAA just reported that May US precipitation totaled an average of 4.41 inches, 1.50 inches above average, and ranked second wettest in the 125-year period of record for May as well as second wettest for all months since January 1895.

The only wetter month in US history was May 2015 with 4.44 inches of precipitation.

The 37.68 inches of precipitation across the contiguous U.S. from June 2018 to May 2019 shattered the previous 1982-83 12-month period by 1.48 inches.

Near-record to record precipitation was observed from the West Coast through the central Plains and into the Great Lakes and parts of the Northeast.

As a result, severe May flooding was observed along the Arkansas, Missouri, and Mississippi rivers. Vicksburg, MS, reported ongoing flooding since mid-February.

Truth(?) in testimony and convincing policy makers

by Judith Curry , June 28, 2019 in WUWT


Some reflections, stimulated by yesterday’s Congressional Hearing, on the different strategies of presenting Congressional testimony.

Yesterday’s Hearing provided an ‘interesting’ contrast in approaches to presenting testimony, when comparing my testimony with Michael Mann’s.

What are the purposes of expert testimony?

There is an interesting document entitled A Guide to Expert Testimony for Climate Scientists, funded by the US National Science Foundation.  Most of this is related to court room hearings, but some is relevant for Congressional Hearings.  Excerpts:

 

Experts may do one or more of the following:

  • Provide the decision-maker with factual information and background to provide the decision-maker with an adequate context for the decision.
  • Apply expert knowledge to the facts of a case and render an opinion about the facts, such as whether certain conditions actually caused an effect.
  • Explain scientific principles and theories to the decision-maker.
  • Extrapolate from the actual facts or hypothetical facts and rendering an opinion regarding the likelihood of an event or occurrence. Experts may speculate on events or occurrences because of their special knowledge or training.
  • Provide an opinion that contradicts or undermines the opinions or conclusions of an expert who testified for the opposing party.

If you are assigned to cross-examine an expert, you should prepare questions that test and challenge the witness on the following subjects :

  • Lack of thoroughness in investigating the facts or data;

  • Insufficient testing of the facts or data;

  • Lack of validity and reliability in testing of facts or data;

  • Existence of other causes or explanations for conclusions or outcomes;

  • Show differences of opinion among experts