Archives par mot-clé : Geology

Mass spectrometry and climate science. Part I: Determining past climates

by Judith Curry, June 16, 2020 in ChRotter_WUWT


Mass spectrometry is essential for research in climate science.

Understanding climate requires having sufficient knowledge about past climate and about the important factors that are influencing climate today, so that reliable models can be developed to predict future climate.

Analytical chemistry enables measurement of the chemical composition of materials, from the amounts of elements and their isotopes in a sample to the identity and concentrations of substances in the most complex biological organisms.

This two-part series covers the application of a powerful analytical chemistry technology — mass spectrometry — to two important areas in climate science:

  • Obtaining reliable information about past climate
  • Understanding composition and behavior of aerosols, which have a large impact on climate

The examples that are included for each topic were selected out of many published papers on the study of climate using mass spectrometry, partly because they feature a very wide range of types of these instruments. The authors were very helpful in providing me with information on their work.[1]

The technology described in this essay may at times be quite complicated! However, I hope that the results of each study will be understandable.

Part 1: Determining past climate

Figure 1: Age of samples taken at indicated depth below surface of ice core

Giant tectonic plate under Indian Ocean is breaking in two

by Geggel L., May 21, 2020 in LiveScience


The giant tectonic plate under the Indian Ocean is going through a rocky breakup … with itself.

In a short time (geologically speaking) this plate will split in two, a new study finds.

To humans, however, this breakup will take an eternity. The plate, known as the India-Australia-Capricorn tectonic plate, is splitting at a snail’s pace — about 0.06 inches (1.7 millimeters) a year. Put another way, in 1 million years, the plate’s two pieces will be about 1 mile (1.7 kilometers) farther apart than they are now.

“It’s not a structure that is moving fast, but it’s still significant compared to other planet boundaries,” said study co-researcher Aurélie Coudurier-Curveur, a senior research fellow of marine geosciences at the Institute of Earth Physics of Paris.

Related: In photos: Ocean hidden beneath Earth’s surface

For instance, the Dead Sea Fault in the Middle East is moving at about double that rate, or 0.2 inches (0.4 centimeters) a year, while the San Andreas Fault in California is moving about 10 times faster, at about 0.7 inches (1.8 cm) a year.

The plate is splitting so slowly and it’s so far underwater, researchers almost missed what they’re calling the “nascent plate boundary.” But two enormous clues — that is, two strong earthquakes originating in a strange spot in the Indian Ocean — suggested that Earth-changing forces were afoot.

On April 11, 2012, a magnitude-8.6 and magnitude-8.2 earthquake hit beneath the Indian Ocean, near Indonesia. The earthquakes didn’t happen along a subduction zone, where one tectonic plate slides under another. Instead, these quakes originated in a weird place for earthquakes to happen — in the middle of the plate.

Arctique géologique 1/2

by Préat A. & Van Vliet-Lanoë B., 22 mai 2020 in ScienceClimatEnergie


A la grande différence de l’Antarctique, l’Arctique est un océan entouré de plateaux continentaux (Fig. 2). L’océan ou bassin arctique est actuellement constitué par un double bassin, séparé une crête très importante, la ride Lomonosov : le sous-bassin canadien à croûte continentale amincie (3 600 m)  et le sous-bassin eurasiatique à croûte océanique mince, de loin le plus profond (5000 m entre la crête Lomonosov et la ride océanique active de Gakkel). Il est entouré comme le long de l’Atlantique Nord par une plateforme continentale ennoyée, constituée de croûte continentale.  Le bassin arctique  d’abord marin et connecté au Proto-Atlantique au début du Jurassique (voir plus loin), est isolé depuis le Jurassique moyen et essentiellement de nature lacustre, modifiant le régime thermique océanique, amenant un contexte voisin du Glaciaire au Crétacé inférieur (au Valanginien in Dromart et al. 2003 ; Korte et al. 2015 ; Piskarev et al. 2018). Il ne se ré-ouvrira sur le bassin atlantique qu’à partir de l’Eocène, via l’ouverture du détroit de Fram. D’autre part le pôle  magnétique terrestre (Nord) est resté sur le bassin arctique depuis le début du Jurassique, donc en position de déficit énergétique lié à l’obliquité de l’orbite terrestre.

Fig. 2  Image Gebco Arctique : L’océan ou bassin arctique est actuellement constitué par un double bassin, séparé une crête très importante, la ride Lomonossov (voir texte).

Are We Seeing a New Ocean Starting to Form in Africa?

by Klemetti, E., May 8, 2020 in EOS


Although shallow magma storage at Erta Ale volcano hints at a rift-to-ridge transition, the tectonic future of the Afar region is far from certain.

Standing next to a lava lake at the summit of a massive volcano, Christopher Moore, a Ph.D. candidate at the School of Earth and Environment at the University of Leeds in the United Kingdom, could see the red haze of lava flows a few kilometers away. This might seem like a rare sight, but at Ethiopia’s Erta Ale, it’s business as usual.

Are such behaviors the first signs of a tectonic transition? This question is part of what Moore has been studying at Erta Ale. The entire Afar region in eastern Africa finds itself in the middle of changes that could split the continent, forming a new ocean basin. The magmatism at Erta Ale might be offering signs of this switch by mimicking the characteristics of a mid-ocean ridge.

Satellite image of eastern Africa, with the Red Sea and the Gulf of Aden to the east
The East African Rift valley, the Red Sea, and the Gulf of Aden are clearly visible in this Landsat 8 image, taken on 8 November 2019. Credit: NASA/Erik Klemetti

However, there isn’t agreement about how close the Afar region is to this tectonic transition. The geophysical characteristics of magma storage at Erta Ale could point to the region’s conversion to an incipient oceanic spreading center, but the petrology of the erupting lava might be telling us that we aren’t there yet.

L’Antarctique géologique (2/2)

by A. Préat, 1 mai 2020 in ScienceClimatEnergie


Cet article fait suite aux trois récents articles publiés par le Prof. Maurin sur SCE (1/3, 2/3,  3/3), et traite de l’évolution géologique de la plaque Antarctica.
Voir également L’Antarctique géologique (1/2).

3/ Situation récente à l’échelle géologique

3.1. Isolation de la plaque Antarctique

Nous arrivons ainsi à la situation actuelle avec l’Arctique et l’Antarctique, situation décrite dans les parties 1 à 3 des articles de M. Maurin (parties 1/3, 2/3 et 3/3). D’où proviennent les glaciations actuelles ? Pour les comprendre il faut remonter au début de l’ère cénozoïque en considérant l’Antarctique qui était en position polaire (Scotese, 2001).

La plaque antarctique, partie intégrante de l’ensemble des continents formant le Gondwana est entourée dès le Jurassique (Figs. 7 et 12, inL’Antarctique géologique 1/2) de rides médio-océaniques (excepté la péninsule antarctique qui provient d’une limite de plaque convergente active avec failles transformantes séparant la plaque Antarctique et la plaque Scotia). En conséquence, la plaque Antarctique est actuellement en expansion par rapport aux plaques adjacentes, et fut particulièrement stable et isolée par rapport aux événements tectoniques du Mésozoïque et du Cénozoïque (ici).

Dans ce contexte, et en remontant le temps, il faut noter l’individualisation, dès l’Ordovicien, de la péninsule antarctique avec des montagnes de plus de 3200 m d’altitude constituant aujourd’hui la région la plus au nord de l’Antarctique occidental et s’étendant au-delà du cercle polaire. Cette chaîne de montagnes prolonge les Andes de l’Amérique du Sud dans la continuité d’une dorsale sous-marine caractérisée par un gradient géothermique élevé (voir plus loin). Ainsi on voit que l’Antarctique, depuis longtemps et encore aujourd’hui, participe à un jeu de tectonique des plaques encore active avec des effets locaux (notamment variations du  gradient géothermique).Ce gradient géothermique est un élément important à prendre en considération dans la dynamique glaciaire car il favorise la fonte et ensuite le glissement des glaces.

Notons que Arctowski (in Fogg 1992) avait déjà suggéré en 1901 que les Andes étaient présentes dans la pointe nord de la péninsule antarctique (Graham Land) .

3.2. Englacement de la plaque Antarctique

Fig. 16 : Image des fonds marins d’une chaîne de 800 km de long de plusieurs volcans actifs de 1000 m de haut situés à proximité de la partie nord du continent antarctique. D’après Kamis, 2016.

L’Antarctique géologique (1/2)

by A. Préat, 24 avril 2020 in ScienceClimatEnergie


Cet article traite de l’évolution géologique de la plaque Antarctica, et fait suite aux trois récents articles publiés dans SCE par le Prof. Maurin sur la cryosphère actuelle (1/3, 2/3,  3/3).

1/ Les glaces fascinent …

Les glaces fascinent depuis longtemps les climatologues qui y voient un monde à part, aujourd’hui elles sont suivies ‘à la loupe’ car elles témoigneraient en tout ou en partie du processus de réchauffement actuel. Elles sont l’objet d’une attention médiatique constante. Pourtant elles furent souvent absentes de la Planète, elles apparurent plusieurs fois et disparurent autant de fois au cours de l’histoire géologique, le plus souvent suivant des modalités différentes à l’échelle temporelle et spatiale.

Il n’est pas possible ici de retracer la longue histoire des glaces qui commence au Précambrien, au moins à la transition Archéen et Protérozoïque (avec la glaciation huronienne, il y a environ 2,4 Ga, pour l’échelle détaillée des temps géologiques voir ici, et ci-dessous (Fig. 1) pour une version simplifiée) et se poursuit avec des aléas divers avec un recouvrement des glaces sur l’ensemble de la Planète à la fin du Néoprotérozoïque, donc y compris dans la zone équatoriale, donnant lieu au fameux ‘Snowball Earth’ ou hypothèse de la Terre boule de neige ou encore ‘Terre gelée’ (glaciation marinoenne qui a fait suite à la -ou les ? glaciation(s) sturtienne(s)- il y a 635 Ma. Ensuite viendra la glaciation Gaskiers vers 580 Ma, c’est-à-dire vers la fin du Précambrien. Cet épisode marinoen d’englacement généralisé perdura plus d’une dizaine de millions d’années avec des calottes de glace sur l’équateur (ici) et est à l’origine du nom de l’avant-dernière période du Précambrien, à savoir le Cryogénien (partie supérieure du Protérozoïque entre 850 Ma et 635 Ma, cf. Fig. 1). Entre ces deux grandes glaciations précambriennes (celles de l’huronien et du marinoen), soit sur un peu plus de 1,5 Ga  aucune autre glaciation n’a encore? été rapportée, ce qui supposerait que pendant cet intervalle de temps le climat s’est maintenu dans des conditions plutôt chaudes, avec une régulation thermique ‘sans faille’ (Ramstein, 2015). Notons également pour être complet la présence de glaciers locaux à 2,9 Ga dans l’Archéen d’Afrique du Sud (glaciation ‘pongolienne’) (ici).

Lunar Recession and the Age of the Earth: How Uniformitarianism Works

by D. Middleton, March 24, 2020 in WUWT


One of the things I love about writing for Watts Up With That, is the fact that reader comments often inspire me to research and write subsequent posts. In my recent post about the origins of the Moon, one commentator suggested that the rate of lunar recession (tidal acceleration) indicated that the Earth was much younger than 4.5 billion years old and/or somehow disproved the geological Principle of Uniformitarianism. I didn’t give much thought to my reply. I simply calculated the distance from the Earth to the Moon 1 billion and 4.5 billion years ago. The Moon is currently receding (moving away) from the Earth at a rate of about 3.8 cm/yr. This has been directly measured with lasers.

At 3.8 cm/yr, the Moon would have been 215,288 miles away from Earth a billion years ago. It is currently an average of 238,900 miles away. At 3.8 cm/yr, it still would have been 132,646 miles away 4.5 BY.

If the Moon did did originate from a collision with Earth, it would have been a lot closer to Earth 4.5 BY than 100,000 miles.

How nodules stay on top at the bottom of the sea

by Geological Society of America, January 13, 2020 in ScienceDaily


Rare metallic elements found in clumps on the deep-ocean floor mysteriously remain uncovered despite the shifting sands and sediment many leagues under the sea. Scientists now think they know why, and it could have important implications for mining these metals while preserving the strange fauna at the bottom of the ocean.

The growth of these deep-sea nodules — metallic lumps of manganese, iron, and other metals found in all the major ocean basins — is one of the slowest known geological processes. These ringed concretions, which are potential sources of rare-earth and other critical elements, grow on average just 10 to 20 millimeters every million years. Yet in one of earth science’s most enduring mysteries, they somehow manage to avoid being buried by sediment despite their locations in areas where clay accumulates at least 100 times faster than the nodules grow.

Understanding how these agglomerations of metals remain on the open sea floor could help geoscientists provide advice on accessing them for industrial use. A new study published this month in Geology will help scientists understand this process better.

“It is important that any mining of these resources is done in a way that preserves the fragile deep-sea environments in which they are found,” said lead author Adriana Dutkiewicz, an ARC Future Fellow in the School of Geosciences at The University of Sydney.

Rare-earth and other critical elements are essential for the development of technologies needed for low-carbon economies. They will play an increasingly important role for next-generation solar cells, efficient wind turbines, and rechargeable batteries that will power the renewables revolution.

Big volcanic bump unlike anything seen before found on the moon

by R.G. Andrews, December 13, 2019 in NationalGeography


Scientists scouring the lunar surface for clues to past impact rates found a bonus feature that has geologists “thoroughly confused.”

Sometime after the solar system formed 4.6 billion years ago, a projectile slammed into Earth’s youthful moon and formed the 620-mile-wide basin known as the Crisium basin. No one knows exactly when this impact happened, but for decades scientists have been trying to solve the puzzle as part of a larger debate over whether the moon and, by proxy, Earth endured a period of frenzied meteor bombardment in their early histories.

Now, scientists scouring the region say they’ve spotted a crater within the basin that appears to contain pristine impact melt, a type of volcanic rock that can act like a definitive geologic clock. If future astronauts or a robot could obtain a sample and tease out its age, that may help reveal what was happening on Earth during the primordial period when life first emerged on our planet.

And, as an added bonus, the discovery comes with an intriguing mystery: The basin also holds a geologic blister the size of Washington, D.C., that’s unlike anything else seen in the solar system. As the team reports in an upcoming paper in the Journal of Geophysical Research: Planets, this volcanic lump appears to have been inflated and cracked by peculiar underground magmatic activity that the researchers can’t currently explain.

“I’m thoroughly confused by it,” says Clive Neal, an expert in lunar geology at the University of Notre Dame who was not involved with the new research.

 

Renowned German Geologist Shocks Audience: “Climate Change Totally Exaggerated”…”Warming Least Of Our Problems” By P Gosselin on 12. Oct

par P. Gosselin, October 12, 2019 in NoTricksZone


It’s unusual to see rationality over climate change in the German media, but sometimes it manages to get through.

In April this year I missed an important podcast interview with one of the world’s most prominent Sahara Desert researchers, geologist Dr. Stefan Kröpelin, by the Düsseldorf-based German daily, Rheinische Post.

Image: University of Cologne

The two RP hosts conducting the interview seemed to expect Dr. Kröpelin would tell the audience how dire the consequences of man-made global warming are on the Sahara Desert and planet overall.

They didn’t get what they bargained for.

Warming does not lead to desertification

Instead, in the interview, Dr. Kröpelin rejected in very clear terms man’s major climatic impact and that global warming is only negative.

Kröpelin told listeners that history is very clear: When the globe is cold, the deserts expand. And when the globe is warm, deserts become greener and far more fruitful.

Kröpelin is a leading expert

Kröpelin has been studying the Sahara for over 40 years, spending weeks and months each year on site gathering data a reconstructing past climates. Naturedescribed Kröpelin as “one of the most devoted Sahara explorers of our time.”

At about 9 minutes into the interview, he explains how the Sahara was massive in size during the last glacial period, and that about ten thousand years ago it greened up once temperatures shot up early in the Holocene.

When asked (10:15) if he worries that things in the Sahara “will get much worse” due to climate change, Kröpelin tells the host and audience: “First, that is a statement I 100% reject”, adding that localized desertification has more to do with the population growth at the edges of the desert and that the people who live there are cutting down trees and extracting water from the ground.

Rising precipitation, shrinking desert

Eocene Climatic Optima: Another Clean Kill of Carbon Dioxide-Driven Climate Change Hypothesis?

by David Middleton, September 30, 2019 in WUWT


Key points

  1. The Eocene was, on average, 4–15 °C warmer than today.
  2. Atmospheric CO2 was very likely in the 450-600 ppm range.
  3. Modern climate models would require 4,500 ppm CO2 to simulate the Eocene temperature range;
  4. And/or a climate sensitivity of 4-8 °C per doubling;
  5. And/or “that other climate forcings were stronger than previously assumed”.

They totally missed the most obvious reason why just about every effort to gin up a paleo example of CO2-driven climate change falls apart: Atmospheric CO2 is not a primary driver of climate change over geologic time. This wouldn’t mean that it isn’t a greenhouse gas or that it has no effect on temperature. It would simply mean that it was a relatively minor climate driver, like volcanic eruptions.

At some point over the past 30 years or so, the assumption that CO2 drives modern climate change has become a paradigm. And I think we have seen a rare failure in the application of the geologic principle of Uniformitarianism.

Uniformitarianism is often incorrectly cited as the reason geologists were slow to accept plate tectonics, the impact theory of the K-Pg extinction and why the hypotheses for a Younger Dryas impact and abiotic oil are generally unaccepted. However, Uniformitarianism may be why a CO2-driven climate paradigm appears to have come into wide acceptance, at least in academia.

Figure 3a. Marine pCO2 (foram boron δ11B, alkenone δ13C), atmospheric CO2 from plant stomata (green and yellow diamonds with red outlines), Mauna Loa instrumental CO2 (thick red line) and Cenozoic temperature change from benthic foram δ18O (light gray line).

 

Le Précambrien : les bactéries, la tectonique des plaques et l’oxygène (2/2)

by Alain Préat, 25 septembre 2019 in Science-Climat-Energie


Résumé : L’oxygène n’est pas apparu aussi brutalement qu’on le pensait sur notre planète (nb: première partie 1/2, ici).

Malgré un apport en oxygène lié aux cyanobactéries dès l’Archéen, ce ne se sont pas ces microorganismes qui sont à la base de la première grande ‘révolution’ de l’oxygène qui a eu lieu à la limite Archéen/Paléoprotérozoïque (il y a 2,5 milliards d’années) dans l’atmosphère, lors du Grand Evénement d’Oxydation. Ce sont les processus liés au cycle de la tectonique des plaques (activité mantellique et périodes intenses d’érosion/altération) qui ont contribué de manière déterminante à l’augmentation de la concentration de l’oxygène atmosphérique vers 2,5 milliards d’années. Les deux principaux processus responsables de cette augmentation sont liés à l’enfouissement de la matière organique et de la pyrite (= FeS2). L’altération des séries riches en ces deux composants conditionnera ensuite pendant près d’un milliard d’années la composition chimique des océans en oxygène, soufre et fer. Au cours du temps, l’oxygène proviendra de l’activité des cyanobactéries et l’atmosphère réductrice du début de l’Archéen sera remplacée par une atmosphère oxydante à la fin du Précambrien.

Abstract : Oxygen did not appear as abruptly as we thought on our planet.

Despite an oxygen supply related to cyanobacteria, since the Archean, it is not these microorganisms that are at the base of the first great oxygen revolution that took place at the Archean/Paleoproterozoic boundary (2.5 billion years) in the atmosphere during the Great Oxidation Event. Two processes related to the cycle of plate tectonics (mantle activity and intense periods of erosion/weathering) were mostly involved in the increase of the of atmospheric oxygen concentration 2.5 billion years ago. These two main processes are related to the burial of organic matter and those of pyrite(= FeS2) The alteration of series with high contents of the two elements will then condition for nearly a billion of years the oxygen, sulfur and iron chemical composition of the oceans. The oxygen will finally come from the activity of cyanobacteria and the early Archean reducing atmosphere will be replaced by an oxidizing atmosphere at the end of the Precambrian.

Le Précambrien : les bactéries, la tectonique des plaques et l’oxygène (1/2)

by Alain Préat, 20 septembre 2019, in ScienceClimatEnergie


Résumé : L’oxygène n’est pas apparu aussi brutalement qu’on le pensait sur notre planète.

Malgré un apport en oxygène lié aux cyanobactéries dès l’Archéen, ce ne se sont pas ces micro-organismes qui sont à la base de la première grande ‘révolution’ de l’oxygène qui a eu lieu à la limite Archéen/Paléoprotérozoïque (il y a 2,5 milliards d’années) dans l’atmosphère, lors du Grand Evénement d’Oxydation. Ce sont les processus liés au cycle de la tectonique des plaques (activité mantellique et périodes intenses d’érosion/altération) qui ont contribué de manière déterminante à l’augmentation de la concentration de l’oxygène atmosphérique vers 2,5 milliards d’années. Les deux principaux processus responsables de cette augmentation sont liés à l’enfouissement de la matière organique et de la pyrite (= FeS2). L’altération des séries riches en ces deux composants conditionnera ensuite pendant près d’un milliard d’années la composition chimique des océans en oxygène, soufre et fer. Au cours du temps, l’oxygène proviendra de l’activité des cyanobactéries et l’atmosphère réductrice du début de l’Archéen sera remplacée par une atmosphère oxydante à la fin du Précambrien.

Abstract : Oxygen did not appear as abruptly as we thought on our planet.

Despite an oxygen supply related to cyanobacteria, since the Archean, it is not these microorganisms that are at the base of the first great oxygen revolution that took place at the Archean/Paleoproterozoic boundary (2.5 billion years) in the atmosphere during the Great Oxidation Event. Two processes related to the cycle of plate tectonics (mantle activity and intense periods of erosion/weathering) were mostly involved in the increase of the of atmospheric oxygen concentration 2.5 billion years ago. These two main processes are related to the burial of organic matter and those of pyrite (= FeS2). The alteration of series with high contents of the two elements will then condition for nearly a billion of years the oxygen, sulfur and iron chemical composition of the oceans. The oxygen will finally come from the activity of cyanobacteria and the early Archean reducing atmosphere will be replaced by an oxidizing atmosphere at the end of the Precambrian.

OLYMPUS DIGITAL CAMERA

Figure 2a( en haut). Stromatolithe columnaire, Néoprotérozoïque, (Formation SC1c in Préat et al. 2018), Bassin du Niari, République du Congo (Brazzaville), photo A. Préat, 2016.

Oxygen depletion in ancient oceans caused major mass extinction

by Florida State University, August. 30, 2019 in ScienceDaily/fromGeology


Late in the prehistoric Silurian Period, around 420 million years ago, a devastating mass extinction event wiped 23 percent of all marine animals from the face of the planet.

For years, scientists struggled to connect a mechanism to this mass extinction, one of the 10 most dramatic ever recorded in Earth’s history. Now, researchers from Florida State University have confirmed that this event, referred to by scientists as the Lau/Kozlowskii extinction, was triggered by an all-too-familiar culprit: rapid and widespread depletion of oxygen in the global oceans.

‘MASSIVE POOL’ OF METHANE HIDDEN DEEP BENEATH EARTH’S SURFACE DISCOVERED BY SCIENTISTS

by Hannay Osborne, 21 August 2019 in Newsweek from PNAS


A huge source of methane has been discovered deep beneath the surface of Earth, sitting between the upper mantle and lower oceanic crust. The discovery is important as it could provide an insight into the hydrothermal vents that may have helped the planet’s first life emerge. Researchers also argue it could be a source of hydrogen and methane on other planets in the solar system—”even those where liquid water is no longer present.”

The ‘abiotic’ methane—methane that is not formed with organic matter—was found locked inside rocks. Researchers from the Woods Hole Oceanographic Institution (WHOI), Massachusetts, took 160 samples from hydrothermal sites across the globe, including the Mid-Atlantic Ridge, Guaymas Basin, the East Pacific Rise and the Mid-Cayman Rise. After analyzing them with a laser-based microscope, they found that almost all contained pockets of methane.

In their study, published in the journal PNAS, the team says this could be the biggest source of abiotic methane in the world. This reservoir, they say, could account for more methane than was in Earth’s atmosphere before the onset of the industrial era.

The methane appears to have formed by reactions between trapped water and olivine, a group of rock-forming minerals found in the planet’s subsurface. When seawater moves through the deep ocean crust, it mixes with magma-hot olivine. When the mineral cools, the water is trapped inside and a chemical reaction takes place, leading to the formation of hydrogen and methane.

Traditionally, we think of methane—a potent greenhouse gas—as forming when organic material breaks down. When it is emitted into the atmosphere, it has a warming effect far greater than carbon dioxide, although it is far shorter-lived than the latter, disappearing after about a decade.

However, methane is also known to exist on the seafloor. It is released through deep-sea vents—geothermally heated fissures on Earth’s crust. In 2016, scientists with the Ocean Exploration Trust discovered over 500 methane spewing vents off the west coast of the U.S.

However, the source of the seafloor methane has remained something of a mystery. “Identifying an abiotic source of deep-sea methane has been a problem that we’ve been wrestling with for many years,” study author Jeffrey Seewald, a senior scientist at WHOI, said in a statement.

Lead author Frieder Klein added: “We were totally surprised to find this massive pool of abiotic methane in the oceanic crust and mantle. Here’s a source of chemical energy that’s being created by geology.”

Fire from Ice: A Case Study of Methane Hydrates in the Eastern Mediterranean

by E. Zogopoulos, August 13, 2019 in EnergyIndustryeView


Methane hydrates is a source of methane gas which is found in crystalline formation that look like ice and can be found in permafrost regions or under the sea in outer continental margins.

We are living in times of fundamental changes in the energy landscape, driven by uncertainty, unstable energy prices, disruptive technologies, geopolitical gambits and subsequent attempts for regulatory interventions. While governments and corporations are trying to adjust to the new landscape and guess the name of the game, they need reliable sources of power to make predictions and critical strategic decisions.

Historical & geopolitical context

The era of hydrocarbons does not seem to be over, but there might be some indications in the horizon. We like it or not, they will still account for the vast majority of the global energy mix by 2050, despite significant breakthroughs in renewables. Many new players come in the energy market with the elusive promise of additional and cheaper resources and the will to disrupt the game – and eventually make money out of it.

Furthermore, the growing tension between public policy and private initiatives has been boiling and has been more than just an understatement for decades. The under-investment that we observe now due to lower prices and risks could become chronic and the global output of energy resources could lead to secure supply deficit.

Gas is believed to gradually replace coal, which is a source of distress for some existing players. The world is facing a proliferation of Liquified Natural Gas (LNG) supplies that are already impacting gas markets and competing with pipeline gas. Some of the largest and most significant consuming nations are contemplating reform or unbundling, which could mean some take or pay contracts become stranded and an increasing oil price is likely to reinforce the price arbitrage between long-term and spot pricing.

There is undeniably a constant call for further investments in renewables, but lower oil, gas and coal prices and increased efficiency (or very effective lobbying) might slow this down. The global players do take into consideration the call for renewables (like solar and wind energy), either for publicity purposes or even because they do believe that this could be the future.

 

Location of sampled and inferred methane hydrate occurrences in oceanic sediment of outer continental margins and permafrost regions. Most of the recovered methane hydrate samples have been obtained during deep coring projects or shallow seabed coring operations. Most of the inferred methane hydrate occurrences are sites at which bottom simulating reflectors (BSRs) have been observed on available seismic profiles. The methane hydrate research drilling projects and expeditions reviewed in this report have also been highlighted on this map. (Map courtesy of Timothy S. Collett, USGS)

Anthropocene: “it will be the rocks that have the final say” about this fake word.

by David Middleton, August 7, 2019 in WUWT


The fake geologic epoch known as the “Anthropocene” just won’t die… It’s like a zombie from a bad science fiction movie.

Despite being populated with activists like Naomi Oreskes, it has taken the AWG ten years to vote on what their conclusion will be and to start looking for evidence to support their conclusion… And the vote wasn’t unanimous.

Here’s where the Anthropocene dies…

 

Figure 4 from Finney & Edwards.  “Workflow for approval and ratification of a Global Standard Stratotype Section and Point (GSSP) proposal. Extensive discussion and evaluation occurs at the level of the working group, subcommission, and International Commission on Stratigraphy (ICS) Bureau. If approved at these successive levels, a proposal is forwarded to the International Union of Geological Sciences (IUGS) for ratification. This process is also followed for other ICS decisions on standardization, such as approval of names of formal units, of revisions to the units, and to revision or replacement of GSSPs.”

A voracious Cambrian predator, Cambroraster, is a new species from the Burgess Shale

by Royal Ontario Museum, July 31, 2019 in ScienceDaily


Fossils of a large new predatory species in half-a-billion-year-old rocks have been uncovered from Kootenay National Park in the Canadian Rockies. This new species has rake-like claws and a pineapple-slice-shaped mouth at the front of an enormous head, and it sheds light on the diversity of the earliest relatives of insects, crabs, spiders, and their kin.

Reaching up to a foot in length, the new species, named Cambroraster falcatus, comes from the famous 506-million-year-old Burgess Shale. “Its size would have been even more impressive at the time it was alive, as most animals living during the Cambrian Period were smaller than your little finger,” said Joe Moysiuk, a graduate student based at the Royal Ontario Museum who led the study as part of his PhD research in Ecology & Evolutionary Biology at the University of Toronto. Cambroraster was a distant cousin of the iconic Anomalocaris, the top predator living in the seas at that time, but it seems to have been feeding in a radically different way,” continued Moysiuk.

Rare fossil in a fossil reveals a dinosaur’s surprising last meal

by Michael Gresko, July 11, 2019 in NationalGeographic


The find—described today in the journal Current Biology—is the fourth Microraptor fossil to preserve stomach contents, but it’s the first to show that Microraptor ate lizards. Previous fossils captured it eating small mammals, fish, or birds. The specimen also reveals that, like some predatory birds today, Microraptor had a taste for swallowing lizards whole and head-first.

This fossil of the feathered dinosaur Microraptor also preserves the animal’s last meal: a lizard it seems to have swallowed whole and head first.

PHOTOGRAPH BY XUWEI YIN

Volcanism Altering Bering Sea Eco-Systems, Not Climate Change

by James  E. Kamis, July 8, 2019 in ClimateChangeDispatch


Volcanism, primarily ocean floor in nature, is the most feasible and plausible cause of recent alterations to the Bering Sea physical and biological systems, not climate change.

Since 2014, multiple changes to the Bering Sea’s physical and biological systems such as a rise in seawater temperature, sea ice melting, alteration of commercial fish migration patterns and the very sudden die-off of certain sea bird species have made front-page news.

Many scientists have been quick to attribute these supposedly ‘unnatural’ events to human-induced atmospheric warming or climate change without mentioning or giving due consideration to emissions from active volcanic features that circumvent the entire Bering Sea and populate its seafloor.

This immediate jump to a climate change cause and event effect relationship is especially difficult to understand knowing that frequently during the last five years we have been informed of yet another eruption from a Bering Sea area volcano located in either Russia, Alaska, or on the Bering seafloor.

So, let’s take a moment to review Bering Sea volcanic activity and its likely effect on the area’s physical and biological systems.

More ‘reactive’ land surfaces cooled the Earth down

by Charles the moderator , July 6, 2019 in WUWT


Higher reactivity could explain temperature drop before last ice age

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

From time to time, there have been long periods of cooling in Earth’s history. Temperatures had already fallen for more than ten million years before the last ice age began about 2.5 million years ago. At that time the northern hemisphere was covered with massive ice masses and glaciers. A geoscientific paradigm, widespread for over twenty years, explains this cooling with the formation of the large mountain ranges such as the Andes, the Himalayas and the Alps. As a result, more rock weathering has taken place, the paradigm suggests. This in turn removed more carbon dioxide (CO2) from the atmosphere, so that the ‘greenhouse effect’ decreased and the atmosphere cooled. This and other processes eventually led to the ‘ice Age’.

In a new study, Jeremy Caves-Rugenstein from ETH Zurich, Dan Ibarra from Stanford University and Friedhelm von Blanckenburg from the GFZ German Research Centre for Geosciences in Potsdam were able to show that this paradigm cannot be upheld. According to the paper, weathering was constant over the period under consideration. Instead, increased ‘reactivity’ of the land surface has led to a decrease in CO2 in the atmosphere, thus cooling the Earth. The researchers published the results in the journal Nature.

Scientist Spots High Geothermal Heat Flux In East Greenland – ‘Dramatic Consequences For Ice Basal Melting’

by K. Richard, July 5, 2019 in NoTricksZone


Geothermal heat flux can foment upper mantle temperature anomalies of 800–1000 °C, and these extreme heat intensities have been found to stretch across 500 km of central-east Greenland. This could result in “a significant contribution of ice melt to the ice-drainage system of Greenland” (Artemieva et al., 2019).

Evidence of more than 100,000 formerly or currently active volcanic vents permeate the Earth’s sea floor (Kelley, 2017).

Active volcanoes spew 380°C sulfuric acid and “metal-laden acidic fluids” into the bottom waters of the world ocean on a daily basis. In other words, literal ocean acidification is a natural phenomenon.

The carbon dioxide concentrations present in these acidic floods reach “astounding” levels, dwarfing the potential for us to even begin to appreciate the impact this explosive geothermal activity has on the Earth’s carbon cycle (Kelley, 2017).

About Antarctica

by Thongchai Thailand, June 27, 2019


THIS POST IS A CRITICAL EXAMINATION OF VARIOUS CLAIMS MADE BY CLIMATE SCIENCE ABOUT THE IMPACT OF CLIMATE CHANGE ON ANTARCTICA AND OF THE EVIDENCE FOR AGW CLAIMED TO BE FOUND IN DATA FROM ANTARCTICA.
IT IS BASED ON THE ANTARCTICA SECTION OF A LECTURE BY JAMES EDWARD KAMIS  [LINK]
  1. Antarctica is broken into two pieces. On the west is West Antarctica that constitutes 20% of Antarctica. The upper portion of West Antarctica forms a thumb. It’s called the Antarctic Peninsula. The remaining 80% of Antarctica is called East Antarctica. The right image shows a NASA graph that reflects ice melting on the entire continent from 1995 to 2015. It is here shown as a proxy for ice melting denominated as millimeters of sea level rise due to meltwater. Note that West Antarctica, inclusive of the Antarctic Peninsula, the 20% portion of the continent, accounts for all of the continent’s ice loss. East Antarctica, the much larger 80%, is actually gaining ice. This melt graph was created in 2015 by Dr. H. Jay Zwally is Chief Cryospheric Scientist at NASA’s Goddard Space Flight Center and Project Scientist for the Ice Cloud and Land Elevation Satellite.
  2. The lopsided melt data raises this question: why is all the melt concentrated in 20% of the continent while the other 80% gains ice? The answer is found in the University of Washington 50-year average surface temperature map. It was generated in 2009 by Dr. Eric Steig – Earth and Space Sciences – University of Washington. It’s validity was hotly debated for many years. However, since that time, it has been proven correct by two more modern studies. NASA’s skin temperature map and British Antarctic Survey’s temperature map.
  3. The surface temperature map that Dr. Steig made represents the temperature of the upper few meters of ice and sediment and does not reflect the temperature of the atmosphere…

How geologic forces are melting southern Greenland ice sheet

by J.E. Kamis, May 25, 2016 in ClimateChangeDispatch


The most plausible scenario for southern Greenland’s surface ice melt is related to geologically induced heat flow and not atmospheric warming for various, well-established reasons. Based on research by the National Oceanic and Atmospheric Administration (NOAA) (see here), the top surface of southern Greenland’s ice sheet is currently melting at a high rate and therefore greatly reducing surface ice volume. They attribute this geographically localized melting effect to an unusually persistent and man-made atmospheric high pressure system (a so-called Omega Block) that has remained stationary above southern Greenland during the spring of 2016.

This non-moving high-pressure system has trapped a cell of very warm air above southern Greenland resulting in higher-than-normal surface ice melting rates and volumes. NOAA and the mainstream media are portraying this above-average melting as undeniable proof man-made global warming damaging our planet.

This portrayal is vastly misleading.

That’s because southern Greenland’s surface ice melt is more likely caused by natural, geologically induced heat flow from one of Earth’s largest Deep Ocean crustal plate junctures, the 10,000 mile long Mid-Atlantic Ridge (MAR). The Mid-Atlantic Ridge is “an immensely long mountain chain extending for about 10,000 miles (16,000 km) in a curving path from the Arctic Ocean to near the southern tip of Africa. The ridge is equidistant between the continents on either side of it. The mountains forming the ridge reach a width of 1,000 miles.”