Archives par mot-clé : PETM

Tertiary hyperthermal events: precursors of the current situation?

by A. Jacobs & A. Préat, May 20, 2019 in SSRN.Elsevier


The focus of this study is based on a detailed analysis of the hyperthermal events of the

Paleocene / Eocene limit of 56 Ma and the lower Eocene (for the 54-52 Ma interval, Figure 1).

This example will show that the Earth has experienced many times much higher temperatures

than today, with warmer, sometimes more acidic oceans and an atmosphere much richer in CO2

(or CH4) than the current one. Are these past events precursors of the current situation?

Keywords: global warming, climate change, Paleocene, Eocene, hyperthermal events

140 Years to a PETM-Style Doomsday!!! Another PETM/Chicken Little of the Sea Epic Fail

by David Middleton, May 18, 2019 in WUWT


Gingerich, 2019 is a recent paper reiterating the PETM Chicken Little of the Sea meme. In the comments section of a recent post, it was cited as evidence of imminent catastrophe and followed up by a comment featuring this image from Clean Tecnica:

I just had to track this back to the Clean Tecnica article… Their scientific prowess is almost always laughable… And I was not disappointed.

Evénements hyperthermiques du Tertiaire : précurseurs de la situation actuelle?

by  A. Préat & A. Jacobs, 17 avril 2019 in ScienceClimatEnergie


Le but de cet article est de montrer combien la climatologie (actuelle et celle du passé) est complexe et que’ la science est loin d’être dite’. Pour ce qui est de la climatologie actuelle de très nombreux articles existent, dont une partie sur SCE. Pour la climatologie du passé les exemples géologiques ne manquent pas (également quelques articles généraux sur SCE, ici). Le propos de cet article est basé sur une analyse détaillée des événements hyperthermiques de la limite Paléocène/Eocène il y a 56 Ma et de l’Eocène inférieur (pour l’intervalle 54-52 Ma, Figure 1). Cet exemple montrera que la Terre a connu à de nombreuses reprises des températures bien plus élevées que celles d’aujourd’hui, avec des océans plus chauds, parfois plus acides et une atmosphère beaucoup plus riche en CO2 (ou en CH4) que l’actuelle. Cela n’a jamais empêché la vie de se développer, et ‘ironie du sort’ c’est au cours d’un de ces événements hyperthermiques du Tertiaire (ou PETM, voir plus loin), qui fut l’un des plus chauds qu’ait connu la Terre, que les mammifères ont poursuivi une radiation évolutive (= diversification des espèces) sans précédent entamée après l’extinction des dinosaures à la limite Crétacé/Tertiaire [1, 2].

 

Volcano In Scotland May Have Caused Prehistoric Global Warming prehistoric volcanic eruption

by S. Beech, January 25, 2019 in ClimateChangeDispatch


A massive volcanic eruption in Scotland on the same scale as the infamous Krakatoa blast may have contributed to prehistoric global warming.

Scientists say that global temperatures spiked around 56 million years ago.

And a new study suggests that a major explosive eruption from the Red Hills on the Isle of Skye may have been a contributing factor to the massive climate disturbance.

Large explosive volcanic eruptions can have lasting effects on climate and have been held responsible for severe climate effects in Earth’s history.

One such event occurred around 56 million years ago when global temperatures increased by up to 8 degrees Celcius (46 degrees Fahrenheit.)

The event has been named the Paleocene-Eocene Thermal Maximum (PETM).

 

New Paper: PETM Was Caused by Climate Change… Ancient Climate Change Caused Climate Change… AEUHHH????

by David Middleton, January 23, 2019 in WUWT


Note how the PETM (55 Ma) is about as far from a CO2 analog to modern times as it possibly could be… unless the PETM stomata data are correct, in which case AGW is even more insignificant than previously thought.

Regarding temperatures, the PETM is also about as far from being an analog to modern times as it possibly could be.

 

Figure 2.  High latitude SST (°C) From benthic foram δ18O.  Funny how the PETM is often cited as a nightmarish version of a real-world RCP8.5… While the warmer EECO is a climatic optimum. (Zachos et al., 2001). Note: Older is to the right.

 

 

 

Claim: Episodic and intense rain was caused by ‘ancient global warming’

by Anthony Watts, September 4, 2018 in WUWT


From the University of Bristol and the “models before measurements” department comes this highly speculative claim that is entirely based entirely on climate models. There’s no actual measured data from any sort of paleo research. It’s science, but not as we know it.


A new study by scientists at the University of Bristol has shown that ancient global warming was associated with intense rainfall events that had a profound impact on the land and coastal seas.

The Palaeocene-Eocene Thermal Maximum (PETM), which occurred about 56 Million years ago, is of great interest to climate scientists because it represents a relatively rapid global warming event, with some similarities to the human-induced warming of today.

Although there have been many investigations of how much the Earth warmed at the PETM, there have been relatively few studies of how that changed the hydrological cycle.

“Back to the future of climate change”

by Anthony Watts, August 10, 2018 in WUWT


Syracuse University professor uses ancient marine sediment as benchmark for present, future climate models

SYRACUSE, N.Y. – Researchers at Syracuse University are looking to the geologic past to make future projections about climate change.

Christopher K. Junium, assistant professor of Earth sciences in the College of Arts and Sciences (A&S), is the lead author of a study that uses the nitrogen isotopic composition of sediments to understand changes in marine conditions during the Paleocene-Eocene Thermal Maximum (PETM)–a brief period of rapid global warming approximately 56 million years ago.

Junium’s team–which includes Benjamin T. Uveges G’17, a Ph.D. candidate in A&S, and Alexander J. Dickson, a lecturer in geochemistry at Royal Holloway at the University of London–has published an article on the subject in Nature Communications (Springer Nature, 2018).