More Proof of a Biological Control on Coral Calcification

by Ross C.L. et al., 2017, June 10, 2018 in CO2Science

The global increase in the atmosphere’s CO2 content has been hypothesized to possess the potential to harm coral reefs directly. By inducing changes in ocean water chemistry that can lead to reductions in the calcium carbonate saturation state of seawater (Ω), it has been predicted that elevated levels of atmospheric CO2 may reduce rates of coral calcification, possibly leading to slower-growing — and, therefore, weaker — coral skeletons, and in some cases even death.

As we have previously pointed out on our website, however (see The End of the Ocean Acidification Scare for Corals and A Coral’s Biological Control of its Calcifying Medium to Favor Skeletal Growth), such projections often fail to account for the fact that coral calcification is a biologically mediated process, and that out in the real world, living organisms tend to find ways to meet and overcome the many challenges they face; and coral calcification in response to ocean acidification is no exception.


See also in French