Archives par mot-clé : Geology

Further proof El Niños are fueled by deep-sea geological heat flow

J.E. Kamis, geologist, January 27, 2017


Origine géothermique de El Nino : quelques évidences?

… Based on this information, it is most likely these eruptive El Niño heat pulses are the result of flow from the various individual components of a giant Solomon Island Area seafloor circulating system. Individual geological components include fractured rock layers, hydrothermal vents, seafloor volcanoes, and open faults. The circulating system is activated by upward movement of deep magma chambers located beneath the Solomon Island area. This movement triggers a high-magnitude earthquake swarm, which in turn activates the seafloor circulating system….

Combien de supercontinents de type ‘pangées’ depuis la formation de la Terre ?

 

par Alain Préat


C'est à partir de 1963 (Vine et Matthews[1]), principalement grâce au paléomagnétisme que l'on comprît le mécanisme à l'origine de la tectonique des plaques pressenti un demi-siècle plus tôt en 1912 par Alfred Wegener à partir de la distribution des paléoflores et des paléofaunes et de la répartition des lithologies sur les différents continents actuels. Wegener en conclut que les continents actuels étaient pour la plupart rassemblés ou emboîtés et formaient à la fin du Permien[2] une seule terre ou un supercontinent qu'il appela la Pangée. Faute de mécanisme convaincant pour expliquer cette situation, peu de géologues adoptèrent la théorie de Wegener et les géologues restèrent fixistes (les continents n'ont jamais bougé) dans leur grande majorité. Il est à noter que la correspondance des formes de côtes entre l'Afrique et l'Amérique du Sud avait déjà été constatée par Francis Bacon en 1620 sans qu'il ne formulât d'hypothèse quant à cette observation [3].

Il fallut encore plus de temps aux géologues et géophysiciens pour s'apercevoir que ce supercontinent, la Pangée, n'était pas une exception dans l'histoire de la Terre, et que plusieurs pangées se sont succédées depuis un peu plus de 2,5 milliards d'années (Ga) suivant un cycle d'environ 300 à 500 millions d'années (Ma). Ce cycle nommé cycle de Wilson[4], ou encore cycle des supercontinents, est le plus long cycle à l'échelle géologique qui fédère un nombre impressionnant de processus opérant à différentes échelles spatio-temporelles : ouverture des rides médio-océaniques, localisation des bassins sédimentaires y compris ceux contenant du pétrole, distribution des minéralisations, variation du niveau marin, évolution des compositions isotopiques du strontium, du soufre…, répartition et diversification des organismes (trilobites, dinosaures, algues…) suivant que leurs populations seront isolées ou au contraire mélangées …

Voir également : La Tectonique des Plaques : une révolution dans les sciences de la Terre

Les deux plus grandes révolutions des espèces au cours des temps géologiques

Robert Paris, 2016


Dans l’histoire des espèces vivantes, il y a eu des périodes d’explosion de la biodiversité (comme Burgess et Ediacara). Ainsi l’explosion de biodiversité, dite de Burgess, qui a produit tous les embranchements du vivant, qui s’est déroulée à l’époque appelée le Cambrien (entre 542 et 530 Millions d’années), a suivi la disparition des animaux de l’époque appelée Ediacara (entre 635 et 541 Millions d’années).

La vie a connu de grands sauts historiques comme le passage de la vie sans oxygène à la vie fondée sur l’oxygène, de la vie unicellulaire à la vie pluricellulaire, et les grandes explosions de diversité comme celles d’Ediacara et Burgess.

Egalement : De Burgess à Franceville (Gabon) , les plus anciennes traces de pluricellulaires

Egalement : le Gabon à aube de la Vie

 

International Commission on Stratigraphy

The International Commission on Stratigraphy is the largest and oldest constituent scientific body in the International Union of Geological Sciences (IUGS). Its primary objective is to precisely define global units (systems, series, and stages) of the International Chronostratigraphic Chart that, in turn, are the basis for the units (periods, epochs, and age) of the International Geologic Time Scale; thus setting global standards for the fundamental scale for expressing the history of the Earth.

See also  Episode : Journal of International Geoscience

 

La Tectonique des Plaques : Une Révolution dans les Sciences de la Terre

Prof. (émer.) Daniel Demaiffe, Université Libre de Bruxelles, 2011


Remarquable synthèse de la tectonique des plaques

La tectonique des plaques telle que nous la comprenons actuellement rend compte de l’histoire de la Terre, aussi bien celle des océans que celle des continents, au cours des derniers 200 Ma. Cette théorie de la mobilité des masses continentales et de l’expansion des fonds océaniques permet d’expliquer l’évolution des plaques lithosphériques sur le long terme. Tuzo Wilson est le premier à avoir formalisé cette évolution (1966) en introduisant le concept de cycle, connu désormais dans la littérature sous l’appellation de cycle de Wilson. Ce cycle résume l’histoire d’un domaine océanique en une série de stades successifs: stade embryonnaire (Mer rouge), stade d’océan jeune (golfe de Basse-Californie), stade de maturité (océan Atlantique), stade de déclin (début des subductions : bassins marginaux du Pacifique), stade terminal de quasi fermeture (la Méditerranée depuis 30 Ma) et stade collisionnel (plateau du Tibet et Himalaya) aboutissant à l’amalgamation de différents blocs continentaux, à la surrection de vastes chaînes de montagnes et à la formation éventuelle de suture ophiolitique.

Des versions animées du déplacement des continents à travers les temps géologiques sont disponibles sur le web (Université de Berkeley), cf premier lien ci-dessous.
Geology : Plate Tectonics

A history of supercontinents on planet Earth

Combien de supercontinents depuis la formation de la Terre?

 

Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous

J.  Brugger, G. Feulner S. Petri  (13 January  2017)


Sixty-six million years ago, the end-Cretaceous mass extinction ended the reign of the dinosaurs. Flood basalt eruptions and an asteroid impact are widely discussed causes, yet their contributions remain debated. Modeling the environmental changes after the Chicxulub impact can shed light on this question. Existing studies, however, focused on the effect of dust or used one-dimensional, noncoupled atmosphere models. Here we explore the longer-lasting cooling due to sulfate aerosols using a coupled climate model. Depending on aerosol stratospheric residence time, global annual mean surface air temperature decreased by at least 26°C, with 3 to 16 years subfreezing temperatures and a recovery time larger than 30 years. The surface cooling triggered vigorous ocean mixing which could have resulted in a plankton bloom due to upwelling of nutrients. These dramatic environmental changes suggest a pivotal role of the impact in the end-Cretaceous extinction.


Also : How the darkness and the cold killed the dinosaurs

Paleontologists classify mysterious ancient cone-shaped sea creatures

One branch on the tree of life is heavier as a team of scientists has determined what a bizarre group of extinct cone-shaped animals actually are. Known as hyoliths, these marine creatures evolved over 530 million years ago and are among the first known to have external skeletons. Long believed to be molluscs, a new study shows a stronger relationship to brachiopods — a group with a rich fossil record though few species living today.

Source : Paleontologists classify mysterious ancient cone-shaped sea creatures

Le changement climatique : la règle en géologie … Le taux de CO2 atmosphérique n’a jamais été aussi faible qu’aujourd’hui et la relation température/teneur en CO2 reste encore mal comprise

par Alain Préat

Article publié ( 27 décembre 2016) sur http://revue-arguments.com

Egalement pour les commentaires, sur le site notre-planete.info


Un écheveau d’une incroyable complexité

Depuis que la Terre existe, c’est-à-dire depuis 4,567 milliards d’années [1], s’il est bien une constante c’est qu’elle n’est jamais restée figée telle quelle, et qu’elle fut sans cesse profondément modifiée de façon plutôt aléatoire. Cela concerne autant les processus internes (notamment la composition de la lithosphère et les variations des mécanismes affectant la dérive des continents) que les processus externes. Parmi ces derniers l’atmosphère n’a cessé de varier du tout au tout notamment en ce qui concerne sa composition gazeuse. L’ensemble de ces processus internes et externes se sont sans cesse ‘télescopés’ et ont entraîné des rétroactions complexes à l’origine des nombreux changements climatiques observés dans les archives géologiques. A ces paramètres s’ajoutent également ceux pilotés à l’échelle extraterrestre, parmi les plus importants citons l’activité du Soleil ou les variations des paramètres orbitaux de notre Planète (précession, obliquité, écliptique). Le résultat est une combinaison extrêmement complexe de processus cumulatifs réguliers, irréguliers, linéaires ou non, chaotiques souvent, jouant à toutes les échelles temporelles et affectant à tout moment le climat qui en constitue une réponse. Physiciens, chimistes, biologistes, géographes… géologues tentent chacun à partir de son pré-carré de démêler cet écheveau particulièrement difficile à comprendre. Les synergies entre les disciplines sont heureusement nombreuses et le système climatique est peu à peu mis à nu à travers les temps géologiques (voir figure ci-dessous pour la succession des âges géologiques).

Echelle des temps géologiques:

ChronostratChart2016-04

L’enregistrement du temps en géologie : l’intuition prise en défaut (conférence)

par Alain Préat


Contrairement à l’intuition, les séries sédimentaires n’ont enregistré que très peu de temps (quelques pourcents seulement) et sont avant tout lacunaires.  Le temps non enregistré est ‘matérialisé’ par des joints ‘secs’  (= arrêts de sédimentation séparant les couches géologiques), des joints d’épaisseur (pluri)millimétrique ou des lacunes d’érosion. Il a fallu près de deux siècles pour s’en rendre compte et l’échelle des temps géologiques s’est construite sur cette erreur de bonne foi. Depuis le milieu du 20ème siècle des commissions d’abord nationales, puis internationales ont été mises

sur pied et tentent de corriger les nombreuses incohérences en proposant de nouvelles coupes géologiques de référence, connues en tant que stratotypes ou limitotypes. L ‘échelle est actualisée tous les quatre ans  et publiée dans le site international de stratigraphy.org.

La conférence présentée  (dans diverses institutions universitaires et à l’Académie royale de Belgique) se veut un historique du problème et intègre les travaux les plus récents en ce domaine. Comme dans beaucoup d’autres disciplines (physique avec’ l’éther’, biologie avec ‘la génération spontanée’, chimie avec ‘le phlogistique’ …), la géologie s’est établie à partir de biais (‘les séries ont enregistré 100% du temps géologique’ )… qui mettent du temps pour être d’abord compris, puis résolus. Travail jamais fini…

En conclusion, vu l’absence d’enregistrement significatif du temps dans les séries géologiques, on peut considérer celles-ci comme des ‘gruyères temporels’ et la plupart du temps il ne se passe donc rien!

Egalement se reporter aux difficultés rencontrées pour déterminer l’âge de la Terre.

 

Climate Change : the Rule in the Geological Record (Conference)

par Alain Préat


 The first aim of paleoclimate science is to identify from observations of the geological record, the  nature of past climate changes. Paleoclimate is probably the oldest discipline in Earth science, it began in the 19th-century, and earlier with the discovery of elephant-like beast in the superficial deposits of Europe and Siberia debate about the intepretation in the 18th-century. The debate was about these surface enviroments of temperate areas shaped by the biblic flood or by glaciers [Préat, 2015 http://www.notre-planete.info/actualites/actu_4356.php]. By the middle of the 20th-century, many climate features associated with the recent ice ages have been identified. Geological processes are critical to the evolution of the climate. The most important issue pertaining the earliest evolution of the Earth’s climate is that energy emitted by the sun has progressively increased over 4.6Ga.  Recontructing climate history from the inherently incomplete geological record requires integrated analyses including geochronology, paleomagnetostratigraphy, paleobiology, paleotectonics etc.  Climate change in the geological past is the rule, it has been reconstructed using a number of key archives (including sedimentary, geochemical proxies) since billion of years. These records reveal that since its birth the Earth’s climate as a rule has been warming up or cooling down with periods of (super)greenhouse and (super)icehouse modes, on scales of thousands to hundreds of million of years. The controlling factors are both cyclic (external or astronomical) and secular (internal to the Earth) and related to plate tectonics. For more than 90 percent of its 4.6 billion-year history, Earth has been too  warm, even at the poles, for ice sheets to form. We live  in unusual times at least from the cooling at the Eocene-Oligocene boundary (± 34 Ma)  with the glaciating Antarctica. The Earth was also severely glaciated several times in its history (e.g. about 750 and 535 Ma).  As an example of the conditions prevailing in the very warm times, oxygen isotopes suggest that the Archean seawater (4.0-2.5 Ga) coud have experimented hyperthermal environments, with temperatures as high as 55-85°C [Knauth, 2005 Palaeogeography, Palaeoclimatology,  Palaeoecology, 219 : 53-69]. Considering the Precambrian as a whole (4.6-0.541 Ga), prior to about 2.2 billion years ago, the amount of oxygen in the atmosphere and surface ocean was small, concentrations of CO2 were as high as 100-1000 times modern levels, as those of CH4 which were more higher. Complex microbial eocosystems developed during this period (sulfate-reducing bacteria, autotrophic methanogens, fermenting bacteria, anoxygenic phototrophic bacteria) and could have been important contributors to the biological productivity of early Earth. Past about 2.2 Ga the productivity began to be driven by oxygen-producing (micro)organisms.

 

Les prophéties hallucinatoires de la Pythie de Delphes expliquées par la géologie

par Alain Préat

La Pythie de Delphes, une prêtresse de l’Antiquité grecque, a fortement marqué les esprits des pèlerins des VIIème et VIème siècles avant Jésus Christ par ses prophéties hallucinatoires. L’oracle, qui portait tantôt sur des faits de guerre, tantôt sur des questions plus personnelles ne faisait pas toujours l’unanimité, mais là n’est pas le plus important… Ce qui constituait une ‘énigme’ en ces temps reculés et jusqu’il y a peu, était le fait que la ou les Pythies entraient en transe dans la grotte, année après année, avec une régularité de métronome. Comment cela était-il possible, y avait-il supercherie, manipulation ? La prêtresse jouait-elle un rôle en accord avec les prêtres… ? Ces questions légitimes furent régulièrement posées tout au long de l’Histoire et finalement, il y a près d’une vingtaine d’années, c’est la géologie qui apporta une solution à cette intrigue. 

Les biominéraux microbiens : des gisements terrestres à l’exobiologie

D. Gillan (U. Mons) et A. Préat (ULB)

En raison de la toxicité des métaux lorsque ceux-ci sont en trop grande concentration dans l’environnement, le monde cellulaire a développé toute une série de mécanismes de résistance qui commencent à être bien connus chez les bactéries. Certains de ces mécanismes produisent des minéraux pouvant alors être qualifiés de biominéraux. De nombreux biominéraux ont ainsi été identifiés dans le monde bactérien. Cela va de la calcite aux oxydes de fer et de manganèse en passant par le phosphate de plomb et d’uranium. L’intérêt de bien connaître les processus de biominéralisation microbienne réside dans le fait qu’ils peuvent servir de biosignature. En effet, lesbiominéraux peuvent être préservés au cours des temps géologiques alors que les cellules à basede carbone se décomposent beaucoup plus rapidement.

La bonne connaissance de la structure de ces biominéraux nous offre un outil précieux qui pourrait être utilisé dans le cadre de la recherche de la vie sur d’autres planètes. Sur terre, l’activité des microorganismes a conduit depuis 3,7 milliards d’années à la formation de gisements minéraux encore exploités. De nombreux exemples sont connus comme les fameux dépôts rubanés de fer (« BIF ») précambriens, les stromatolithes précambriens exploités par les cimentiers en Afrique, les « marbres rouges » mésozoïques européens dont la teinte liée à des ferro-bactéries sont utilisés depuis des siècles par les architectes, les gisements d’or d’Afrique du Sud plus riches grâce à la médiation bactérienne, certains gisements de plomb, de zinc, de nickel, etc. Tous les indices biologiques laissés dans ces bio-gisements suite aux interactions de microbes et minéraux seront parmi les premiers qui nous révèleront des traces de vie sur d’autres planètes.

Gisements supergéants disparus : comment se forme le pétrole du Précambrien

par Alain Préat

Des formations et migrations d’hydrocarbures ont été mises en évidence il y a 3,25 Ga (milliards d’années) dans l’Archéen en Australie et il y a 2,45 Ga au Canada. Mais l’un des plus beaux cas est celui d’un gisement supergéant de 5 milliards de barils (qui auraient été récupérables) à partir d’une formation du Paléoprotérozoïque (± 2,1-2,0 Ga) affleurant sur 9 000 km2 près du lac de Onega dans le NO de la Russie, au sud de la Mer de Barents. Le pétrole et presque tous les gaz sont liés à l’évolution de la matière organique au cours de l’enfouissement des séries géologiques à des profondeurs de quelques kilomètres (< 6 km). Au-delà, tous les hydrocarbures sont perdus, transformés en graphite (carbone pur) sous l’effet de températures et de pressions trop élevées. Le processus qui conduit à la formation d’un gisement d’hydrocarbures est long et comporte plusieurs étapes. Si l’une d’entre elles manque, le gisement n’a aucune chance de se former. Ce processus, qui s’étend sur des dizaines de millions d’années (Ma), débute par le piégeage et la maturation de la matière organique, surtout planctonique et algaire (c’est-à-dire roches sources ou roches mères), se poursuit par l’expulsion des hydrocarbures vers des roches poreuses et perméables (= roches réservoirs) situées à proximité ou à des centaines de kilomètres. L’étanchéité du réservoir est assurée par le dépôt de couches imperméables (argiles, sels… = roches couvertures). Le processus qui expulse et permet la migration des hydrocarbures est lié, pour l’essentiel, aux structurations ou déformations tectoniques. Et si l’étanchéité n’est pas assurée, les hydrocarbures s’échappent à la surface terrestre, au fond des océans ou dans l’atmosphère (= dysmigration) (suite lien web).

Pourquoi donc les “marbres rouges” sont-ils rouges?

par Alain Préat


Depuis des siècles, les calcaires rouges d’Europe (traditionnellement appelés « marbres rouges ») ont fasciné les architectes et les sculpteurs qui les ont utilisés tant dans les monuments civils et religieux, que pour les œuvres d’art. Les marbres rouges sont relativement rares dans la nature et ont été recherchés et exploités depuis le Moyen Âge en Belgique, Espagne, France, Italie, Tchéquie, etc. Leurs âges sont divers, depuis le Cambrien jusqu’au Néogène [1]. Les marbres rouges dévoniens de France et de Belgique eurent une vogue extraordinaire aux XVe et XIXe siècles : plus de 400 carrières furent ouvertes de la Montagne Noire jusqu’aux bordures des Ardennes franco-belges qui produisirent différentes variétés, depuis les « Rouges Byzantins » jusqu’aux « Rouges Impériaux ». Ainsi furent édifiés le Palais de Louis XIV, le Trianon , le Château de Versailles ; on les retrouve même à l’Assemblée Nationale au Palais Bourbon à Paris.

Il semble ainsi approprié d’introduire cette discussion par une citation poétique, puisque cette teinte a inspiré tant de jolies choses [2] :

« Quand sur toi leur scie a grincé
les tailleurs de pierre ont blessé
quelque Vénus dormant encore,
et la pourpre qui te colore
te vient du sang qu’elle a versé »

Alfred de Musset, Poésies Nouvelles, 1850

(suite lien web)

Le Déluge face aux moraines glaciaires, premier débat sur le changement climatique

par Alain Préat

Le premier doute sur l’interprétation diluvienne fut apporté en 1806 par un botaniste russe, Mickhail Adams, lorsqu’il exhuma un mammouth quasi intact, avec squelette complet, cartilages en place, peau bien préservée et longs poils laineux entiers. Cuvier en conclut immédiatement que ce mammouth était adapté aux régions froides de l’Arctique, y avait vécu et péri et ne pouvait provenir des tropiques. Le débat sur le changement climatique était lancé et allait diviser la communauté des géologues d’Europe et d’Amérique du Nord jusqu’à la synthèse d’Agassiz en 1840. La découverte d’animaux ressemblant aux éléphants dans les dépôts superficiels d’Europe et les plaines gelées du nord de la Sibérie était un problème pour les savants du 18ème siècle, puisque ces animaux n’étaient connus que dans les tropiques, et à l’époque il n’était pas question de changement du climat. Une seule explication était possible et fut proposée en 1728 par le zoologiste allemand Johann Breyne : les animaux ont péri lors du Déluge de Noé, les os et les dents ayant été transportés vers le Nord par les flots, les vents et abandonnés sur place à la fin du Déluge. Ce dernier était universel et les Ecritures bibliques représentaient la clé de l’interprétation de l’histoire naturelle. En 1796 Cuvier, un brillant anatomiste des vertébrés, fut le premier a montrer qu’il s’agissait de mammouths, donc une espèce distincte des éléphants actuels, et le mammouth devint à cette occasion la première espèce reconnue comme éteinte, bien avant les dinosaures en 1820 (suite lien web).

Les ressources naturelles sont-elles inépuisables?

Les ressources naturelles [1] peuvent-elles satisfaire sans fins nos exigences de bien être ?  À long terme surement pas, les gisements (métaux -uranium, thorium, or … et pierres précieuses –diamants, saphirs, topazes…), les hydrocarbures (gazeux, liquides, solides) et les géomatériaux (roches, sables, granulats…) ne sont pas renouvelables. L’économie internationale étant contrainte en premier lieu par la géologie, il en résulte une distribution inégale des richesses de la Terre et une lutte pour se les approprier, nécessitant un développement technologique pour accroître les volumes récupérables. Certains vont même jusqu’à parier que les futures ressources seront à prendre sur d’autres planètes, sur des astéroïdes ; des équipes y travaillent déjà. En attendant, tentons un bilan de la situation actuelle : reste-t-il assez de ressources sur notre planète? Pour combien de temps ?  Estimer leur volume ultime[2] est assez facile grâce à l’exploration de plus en plus efficace, mais prédire leur durée d’exploitation est une autre paire de manches car elle dépend de facteurs économiques et politiques aléatoires aussi bien dans les court et moyen termes. Les réserves ne peuvent qu’évoluer au cours du temps en fonction des moyens et les déclarer est un acte politique et économique de grande importance.

Déterminer l’âge de la Terre : une bien longue quête

par Alain Préat


On pourrait croire qu’avec l’avènement de la physique nucléaire lié à la découverte de la radioactivité en 1896, l’âge absolu de la Terre aurait été facile à déterminer. Il n’en fut rien. Avant cela, le débat, voire les querelles sur l’âge de la Terre, étaient nombreuses. D’après James Ussher (1581-1656), archevêque anglican d’Armagh et primat d’Irlande, qui se basait sur la chronologie biblique, la Création aurait eu lieu dans la nuit précédant le dimanche 23 octobre 4004 avant Jésus Christ (calendrier julien). Selon lui, la Terre serait donc récente ; ces déclarations furent prises pour argent comptant pendant près de trois siècles. Avant Ussher, cet âge était encore plus énigmatique : soit la Terre avait toujours existé (Aristote), soit elle avait « simplement » été créée avec l’Univers sans date précise (religions monothéistes). L’âge biblique intrigua bien entendu de nombreux savants depuis la Renaissance (Kepler, Newton, Descartes, Kelvin, Halley …) qui utilisèrent des méthodes de calcul variées (érosion des reliefs, salinité des océans, refroidissement du Globe, distance Terre-Lune…) pour aboutir à des âges de quelques milliers d’années à quelques dizaines de millions d’années. Pour ces premiers scientifiques (ils étaient très nombreux), les temps géologiques étaient bien plus longs que les temps historiques. En 1721, Henri Gautier, inspecteur des ponts et chaussées en Languedoc, publia le chiffre de 35 000 ans à partir d’études sur l’ablation des reliefs. En réalité, ses calculs le menèrent à quelques millions d’années, mais il publia volontairement un âge faux pour éviter des problèmes avec l’Église En 1859, Charles Darwin avança le chiffre de 300 millions d’années [1] ce qui laissait suffisamment de temps aux espèces vivantes pour évoluer. Face aux critiques, il se ravisa et proposa environ 40 millions d’années (suite lien web).

L’Histoire Naturelle est chaotique, la biodiversité aussi …

par Alain Préat

S‘il l’on procédait à ‘une remise à zéro totale’ des processus ayant affecté l’évolution de notre planète, il est fort à parier qu’aujourd’hui, c’est-à-dire 4,567 milliards d’années après la formation de la Terre, la Vie serait bien différente avec une chimie (ADN ou autre combinaison chimique) et biologie (autres plans d’anatomie, autres crises, autre biodiversité) que l’on a difficile à imaginer. La Vie aurait influencé différemment la composition de notre atmosphère (c’est par exemple elle qui est à l’origine de notre oxygène) en même temps que l’atmosphère régule la Vie. Pourrait-on le prévoir? 

L’oxygène : un poison pendant plusieurs milliards d’années….

par Alain Préat


Nous ne nous en rendons pas compte, mais chacune de nos inspirations nous apporte 21% d’oxygène, et cette concentration élevée n’est présente que sur notre planète (en l’état actuel des connaissances), et depuis peu de temps ! L’oxygène atmosphérique était en effet en quantité infinitésimale (entre un dix millième et un millième de pourcent de sa concentration actuelle) depuis la formation de la Terre il y a 4,56 Ga [1] jusqu’au Grand Evénement d’Oxygénation (GEO, encore appelé ‘la grande oxydation’ ou la ‘catastrophe de l’oxygène’) qui affecta la Terre entre 2,5 et 2,3 Ga. Durant cet événement, la concentration atmosphérique en oxygène n’était que de 1 à 10 % de sa valeur actuelle. C’était encore très peu, et il fallut attendre le début du Cambrien, il y a 541 Ma, pour atteindre la teneur actuelle. Cette dernière fluctua et devînt même plus élevée jusqu’à 27 % au cours de l’Eocène (il y a environ 50 Ma) et jusqu’à 35 % pendant quelques dizaines de millions d’années au cours du Carbonifère et du Permien (il y a environ 300 Ma) avec le développement d’insectes géants, telles des libellules [2] de 75 cm d’envergure …

La concentration atmosphérique de l’oxygène fut donc faible ou très faible pendant le Précambrien, soit pendant près de 90 % de l’histoire de la Terre. Quels sont les mécanismes qui régissent cet oxygène nécessaire aujourd’hui à presque tout ce qui vit ? Quelles sont les conséquences géologiques et biologiques de ces faibles concentrations et des variations de l’oxygène au cours des temps géologiques ?

L’eau, sans laquelle la vie est impossible, fut très rapidement présente sur notre planète, 160 Ma seulement après sa formation, l’atmosphère resta fort longtemps (2 à 3 milliards d’années) riche en gaz à effet de serre, avec 10 à 1000 fois plus de dioxyde de carbone, de méthane, d’éthane, d’hydrogène, d’oxyde nitreux, de dioxyde de soufre, de sulfure d’hydrogène qu’actuellement …. l’ensemble de ces molécules étant lié pour l’essentiel au dégazage du manteau terrestre (volcanisme et métamorphisme). Les océans précambriens, également riches en ces gaz ne contenaient pas ou très peu d’oxygène pendant cette longue période. Malgré ces conditions qui nous semblent sévères pour une activité biologique, cette dernière était florissante et liée aux bactéries méthanogènes, sulfato-réductrices, … constituant des écosystèmes notamment basés sur le cycle du soufre, tels ceux rencontrés aujourd’hui dans les ’fumeurs noirs’ [3] au niveau des sources hydrothermales profondes en l’absence ou quasi-absence de lumière et d’oxygène. Des bactéries pouvaient en effet se développer dans de telles conditions puisque deux des principales conditions étaient réunies très tôt sur la Terre, à savoir présence d’eau et de roches, l’altération de ces dernières enrichissant les océans en différents éléments chimiques. Ainsi les premières bactéries à se développer sont-elles chimiosynthétiques ou chimiotrophes [4] utilisant des matières minérales (dont le dioxyde de carbone) sans aide de la lumière dans des liquides et des gaz sans oxygène. Ensuite des bactéries (= phototrophes anoxygéniques [5] utilisèrent la lumière et oxydèrent les ions sulfures en ions sulfates, qui furent repris par les bactéries sulfato-réductrices ce qui permit l’oxydation ou la dégradation de la matière organique produite par les phototrophes anoxygéniques, avec l’aide éventuelle de la fermentation bactérienne et des bactéries méthanogènes. Sans oxygène dans l’atmosphère, ni dans les océans, le fer en provenance du manteau (volcanisme) était dissout dans l’eau marine et se présentait sous sa forme réduite c.à.d. sous forme de fer ferreux [6]. A environ 2,5 Ga (période du GEO) tout ce fer fut massivement oxydé formant les fameux ‘BIF’ (Banded Iron Formation [7]) actuellement exploités à l’échelle mondiale, notamment par Arcelor Mittal. Que s’est-il donc passé il y 2,5 Ga ? car cette oxydation nécessitait la présence d’oxygène…

Ce changement majeur, cette révolution même, fut liée à l’apparition des cyanobactéries, qui munies de chlorophylle produisirent l’oxygène enrichissant progressivement les océans, puis l’atmosphère en ce gaz. Une autre source d’oxygène, sporadiquement plus importante, était liée à l’activité des bactéries sulfato-réductrices anaérobiques qui abondent aujourd’hui dans la Mer Noire, dans de nombreux fjords norvégiens…. également dans nos intestins… Elles produisirent dans les sédiments précambriens des sulfures qui réagirent avec le fer ferreux (Fe2+) pour former la pyrite (FeS2), cette réaction libéra également de l’oxygène et de l’eau [8]. L’accumulation d’oxygène, surtout par les cyanobactéries, il y a 2,5 Ga ne fut cependant pas soudaine, les premières cyanobactéries apparaissant bien avant 2,5 Ga sans que l’on puisse aujourd’hui préciser quand. Elles produisirent de l’oxygène qui fut rapidement neutralisé par des gaz réducteurs (principalement l’hydrogène) issus d’une tectonique des plaques très intense recyclant la partie supérieure du manteau jusqu’à 2,5 Ga. Avec le ralentissement progressif (sur quelques centaines de millions d’années) de cette tectonique, les gaz réducteurs n’étaient plus en mesure de neutraliser l’oxygène qui s’accumula et la plupart des bactéries anaérobiques furent décimées ou se refugièrent dans des microenvironnements qui les protégeaient de ce nouveau produit toxique…

Une autre conséquence de cette apparition de l’oxygène est par exemple la disparition de l’uraninite (UO2), minéral qui ne peut se former en présence d’oxygène (car l’uranium forme alors un ion uranyle UO22+ soluble dans l’eau). L’or des gisements d’Afrique du Sud a été arraché à des filons de quartz, ensuite transporté et déposé dans des méandres de rivières fonctionnant de 3,1 à 2,8 Ga (Archéen), cet or est associé à de petits galets ou grains de sables roulés d’uraninite également transportés et nécessairement formés en milieu réduit (sans oxygène). Ces grains sont également connus jusqu’à environ 2,5 Ga en Australie, au Canada, en Inde, après cette date l’uraninite détritique ne s’est plus formée, l’ion uranyl captant l’uranium en conditions oxydantes.

Ainsi le couplage tectonique des plaques et activité microbienne est à même d’expliquer les variations d’oxygène de notre atmosphère depuis plusieurs milliards d’années. Que ce système fonctionne depuis si longtemps est un véritable ‘challenge’ au vu de la production de l’oxygène à court terme : si les 3,7 x 1019 moles d’oxygène de notre atmosphère actuelle étaient liquéfiées, elles formeraient un liquide de 6 cm d’épaisseur recouvrant l’entièreté de la planète. Les images satellitaires et mesures de la bioproductivité végétale (phytoplanctonique, algaire, bactérienne… et celle des végétaux supérieurs) montrent que la production primaire nette de carbone est de 8,8 x 1015 moles par année. Si l’on compare cette valeur à la la quantité actuelle d’oxygène dans l’atmosphère le calcul montre que l’oxygène est produit en 4200 années [9] et qu’en regard des temps géologiques, cette concentration est certainement instable. A chacune de ses inspirations l’Homo sapiens d’il y a plus de 100 000 ans ne respirait sans doute pas exactement 21% d’oxygène…

1 La formation de la Terre date de 4,568 Ga ± 0,003 Ga (Ga = milliard d’années), les premiers organismes « développés » (métazoaires) apparaissent au Cambrien il y a 0,541 Ga ± 1 Ma (Ma = million d’années), les premières bactéries à l’Archéen il y a 3,8 Ga. Le Précambrien est divisé en Hadéen, Archéen et Protérozoïque (divisé en Paléo-, Méso- et Néoproterozoïque).

2 Il s’agit de l’espèce Meganeura monyi, appartenant à une lignée éteinte (famille Meganeuridae), apparentée aux libellules et demoiselles actuelles (ordre Odonata). Cette espèce fut découverte à la fin du XIXe siècle à Commentry, dans l’Allier en France. Cette hypothèse de gigantisme lié à un taux d’oxygène exceptionellement élevé est sujette à controverse…

3 Les fumeurs noirs ou cheminées, et sources hydrothermales sont des évents hydrothermaux situés à proximité des dorsales océaniques. Ils sont liés à l’activité des plaques tectoniques et évacuent une partie de la chaleur interne de la Terre. Ils sont le siège d’une vie sous-marine luxuriante.

4 La chimiotrophie est un des types trophiques caractérisant le mode de nutrition des organismes basé sur une source d’énergie chimique (organique ou inorganique).

5 Il s’agit de bactéries utilisant la lumière comme source d’énergie dans un milieu sans oxygène.

6 En solution aqueuse, l’élément chimique fer est présent sous forme ionique avec deux valences principales,  Fe2+ ou ‘fer ferreux’ et Fe3+ ou ‘fer ferrique’ (ce dernier est par exemple à l’origine de la teinte de nombreux ‘marbres rouges’, http://www.pseudo-sciences.org/spip.php?article2481).

7 ou gisements de fer rubané formant des minerais très riches en fer constitués de l’alternance centimétrique de lits ou lamines quartzitiques et de lits ou lamines riches en oxydes ferriques (principalement la magnétite Fe3O4 et l’hématite Fe2O3). Ils représentent 90% du minerai de fer exploité dans le monde (ils sont très abondants entre 2,5 et 2,0 Ga, ils apparaissant vers 3,7 Ga et disparaissent vers 0,7 Ga).

Suivant la réaction 4SO42- + 2Fe2+ 4H+ = 2FeS2 (pyrite) + 2H2O + 7O2 (combinaison de deux réactions). Lorsque la pyrite est rapidement enfouie (cf. conditions géologiques), l’oxygène est libéré.

9 Canfield, 2014 Oxygen, A Four Billion Year History, Princeton University Press, Oxford.