Archives par mot-clé : Phytoplankton

How deep-ocean vents fuel massive phytoplankton blooms

by Stanford’s School of Earth, Energy & Environmental Sciences, June 5, 2019 in WUWT


More “settled science” of the carbon cycle~ctm

Stanford study shows how hydrothermal vents fuel massive phytoplankton blooms — and possible hotspots for carbon storage

Researchers at Stanford University say they have found an aquatic highway that lets nutrients from Earth’s belly sweep up to surface waters off the coast of Antarctica and stimulate explosive growth of microscopic ocean algae.

Their study, published June 5 in the journal Nature Communications, suggests that hydrothermal vents – openings in the seafloor that gush scorching hot streams of mineral-rich fluid – may affect life near the ocean’s surface and the global carbon cycle more than previously thought.

Mathieu Ardyna, a postdoctoral scholar and the study’s lead author, said the research provides the first observed evidence of iron from the Southern Ocean’s depths turning normally anemic surface waters into hotspots for phytoplankton – the tiny algae that sustain the marine food web, pull heat-trapping carbon dioxide out of the air and produce a huge amount of the oxygen we breathe. “Our study shows that iron from hydrothermal vents can well up, travel across hundreds of miles of open ocean and allow phytoplankton to thrive in some very unexpected places,” he said.

Kevin Arrigo, a professor of Earth system science and senior author of the paper, called the findings “important because they show how intimately linked the deep ocean and surface ocean can be.”

Study: Much of the surface ocean will shift in color by end of 21st century

by Charles the moderator,  February 5, 2019 in WUWT


Climate-driven changes in phytoplankton communities will intensify the blue and green regions of the world’s oceans

From the Massachusetts Institute of Technology

Climate change is causing significant changes to phytoplankton in the world’s oceans, and a new MIT study finds that over the coming decades these changes will affect the ocean’s color, intensifying its blue regions and its green ones. Satellites should detect these changes in hue, providing early warning of wide-scale changes to marine ecosystems.

Writing in Nature Communications, researchers report that they have developed a global model that simulates the growth and interaction of different species of phytoplankton, or algae, and how the mix of species in various locations will change as temperatures rise around the world. The researchers also simulated the way phytoplankton absorb and reflect light, and how the ocean’s color changes as global warming affects the makeup of phytoplankton communities.

The researchers ran the model through the end of the 21st century and found that, by the year 2100, more than 50 percent of the world’s oceans will shift in color, due to climate change.

Algae thrive under Greenland sea ice

by Bigelow Laboratory for Ocean Sciences, January 8, 2019 in ScicneDaily


Microscopic marine plants flourish beneath the ice that covers the Greenland Sea, according to a new study. These phytoplankton create the energy that fuels ocean ecosystems, and the study found that half of this energy is produced under the sea ice in late winter and early spring, and the other half at the edge of the ice in spring.

Glacier depth affects plankton blooms off Greenland

by Helmholtz Centre for Ocean Research Kiel (GEOMAR), Auhsut 14, 2018 in ScienceDaily


The unusual timing of highly-productive summer plankton blooms off Greenland indicates a connection between increasing amounts of meltwater and nutrients in these coastal waters. Researchers now show that this connection exists, but is much more complex than widely supposed. Whether increasing meltwater has a positive or negative effect on summertime phytoplankton depends on the depth at which a glacier sits in the ocean.

“So, the study shows that further melting of Greenland’s glaciers only leads to stronger summer plankton blooms under very specific conditions, an effect that will ultimately end with very extensive further melting,” Hopwood summarizes the results of the study.

Ice sheets of the last ice age seeded the ocean with essential nutrient silica

by University of Bristol, August 10, 2018 in ScienceDaily


Silica is needed by a group of marine algae (the microscopic plants of the oceans) called diatoms, who use it to build their glassy cell walls (known as frustules).

These plankton take up globally significant amounts of carbon — they remove carbon dioxide from the atmosphere via photosynthesis, and act as a natural carbon sink when they die and fall to the bottom of the ocean — and form the base of the marine food chain.

The researchers are also planning to use more complex and realistic computer models to delve deeper into the potential changes in the global silica cycle since the last glacial maximum. These might include more accurate representations of ocean currents, recycling of silica in the water column, and potential changes to the marine algal community.

The gypsum gravity chute: A phytoplankton-elevator to the ocean floor

by

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, May 22, 2018 in ScienceDaily


When marine algae die, they usually float in slow motion to the ocean’s depths. However, during an expedition with the research icebreaker Polarstern to the Arctic in the spring of 2015, scientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) discovered a phenomenon that significantly accelerate this transport: tiny gypsum crystals, which form during the freezing of salt in the porous spaces of Arctic sea ice, weigh down the phytoplankton like heavy ballast, pulling them to the bottom within a matter of hours. The effect is like an express elevator for the carbon they contain. “This mechanism was previously completely unknown,” says marine bio-geologist Dr Jutta Wollenburg … (…)

In times of climate change: What a lake’s color can tell about its condition

by Forschungsverbund Berlin e.V. (FVB), September 21, in ScienceDaily


With the help of satellite observations from 188 lakes worldwide, scientists have shown that the warming of large lakes amplifies their color. Lakes which are green due to their high phytoplankton content tend to become greener in warm years as phytoplankton content increases. Clear, blue lakes with little phytoplankton, on the other hand, tend to become even bluer in warm years caused by declines in phytoplankton. Thus, contrary to previous assumptions, the warming of lakes tends to amplify their richness or poverty of phytoplankton.

See also here