Archives par mot-clé : Organisms

Retraction request for Harvey et al. attack paper on Dr. Susan Crockford

by Dr. S. Crockford, in A. Watts, December 5, 2017 in WUWT


Essay by Dr. Susan Crockford (republished from her website https://polarbearscience.com )on Retraction request to Bioscience: FOIA emails document another harsh criticism of Amstrup’s 2007 polar bear model

Today I sent a letter to the editors of the journal Bioscience requesting retraction of the shoddy and malicious paper by Harvey et al. (Internet blogs, polar bears, and climate-change denial by proxy) published online last week.

The letter reveals information about the workings of the polar bear expert inner circle not known before now, so grab your popcorn.

See also here

Oxygen-18 Stability in Foraminifera fossils, implications in paleoclimatology

by Andy May, November 4, 2017


18O is a rare isotope of oxygen. The ratio of 18O to the normal 16O in foraminifera fossils (“forams”) can be used to estimate paleo-ocean temperatures. Higher values mean lower temperatures. A recent article on geologypage.com (here) led me to Bernard, et al., 2017, which has experimental data that suggest 18O concentrations can be altered in fossils by solid-state diffusion after fossilization. This can corrupt the measurement and the resulting calculated temperature

The End Of The Ocean Acidification Scare For Corals

by McCulloch et al., 2017, October 2017,  in co2science


Paper Reviewed: McCulloch, M.T., D’Olivo, J.P., Falter, J., Holcomb, M. and Trotter, J.A. 2017. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nature Communications 8: 15686, DOI:10.1038/ncomms15686

(…) The implications of the above findings are enormous, for they reveal that “pHcf upregulation occurs largely independent of changes in seawater carbonate chemistry, and hence ocean acidification,” demonstrating “the ability of the coral to ‘control’ what is arguably one of its most fundamental physiological processes, the growth of its skeleton within which it lives.

See also here

The Impact of Elevated CO2 on a Widespread Ectomycorrhizal Fungi

by McCormack et al., 2017, September 18, 2017 in FungalEcology


In light of the above findings, it would appear that, given the near-global distribution of this EM fungi and its importance in stimulating ecosystem productivity, the positive impact of elevated CO2 on C. geophilumproduction (~50% increase for a 200 ppm rise) represents a welcomed benefit for the future of Earth’s forests.

Dino-killing asteroid could have thrust Earth into two years of darkness

by National Center for Atmospheric Research/University Corporation for Atmospheric Research, August 21, 2017 in ScienceDaily


Tremendous amounts of soot, lofted into the air from global wildfires following a massive asteroid strike 66 million years ago, would have plunged Earth into darkness for nearly two years, new research finds. This would have shut down photosynthesis, drastically cooled the planet, and contributed to the mass extinction that marked the end of the age of dinosaurs.

The rise of algae in Cryogenian oceans and the emergence of animals

by Jochen J. Brocks et al., August 2017, in Nature


The ‘Rise of Algae’ created food webs with more efficient nutrient and energy transfers, driving ecosystems towards larger and increasingly complex organisms. This effect is recorded by the concomitant appearance of biomarkers for sponges and predatory rhizarians, and the subsequent radiation of eumetazoans in the Ediacaran period.

See also here