Archives par mot-clé : Archean

CO2 and O2 oxidized 2.7 Ga micrometeorites in two stages suggesting a >32% CO2 atmosphere

by Huang G. et al., Nov 2021 in PrecambrianResearch


Abstract
It is widely accepted that atmospheric pO2 < 1 ppm before the Great Oxidation Event. Yet a recent study found fossil micrometeorites (MMs) containing the oxidized iron species wüstite (FeO) and magnetite (Fe3O4) formed 2.7 billion years ago (Ga). How these MMs became oxidized is uncertain. Abundant O2 in the upper atmosphere and iron oxidation by CO2 have been suggested. However, photochemical reactions cannot produce sufficient O2, and oxidation by CO2 can only produce FeO, each individually failing to explain the formation of Fe3O4-only MMs. Using an oxidation model of iron MMs including photochemistry, we show that a >32% CO2 Archean atmosphere and different entry angles can generate the Fe3O4-only and Fe-FeO mixed composition MMs that have been discovered. Oxidation happens in two stages: by CO2 under brief melting, then by O2. Our results challenge existing constraints on Earth’s atmospheric CO2 concentration at 2.7 Ga and support a warm Late Archean despite the ‘faint young Sun’.

Chemical nature of the 3.4 Ga Strelley Pool microfossils

by J. Allen et al., 2018 in GeochemicalPerspectiveLetters


The biogenicity of putative traces of life found in early-Archean rocks is strongly debated. To date, only equivocal lines of evidence have been reported, which has prevented a full consensus from emerging. Here we report elemental and molecular data from individual organic microfossils preserved within the 3.4 billion-year-old cherts of the Strelley Pool Formation, Western Australia. The present results support the growing body of evidence advocating their biogenicity, promoting them as the oldest known authentic organic microfossils. These microfossils consist of nitrogen- and oxygen- rich organic molecules that have been only slightly degraded despite experiencing temperatures of ~300 °C. Such molecular preservation emphasises the palaeobiological potential of the Earth’s oldest geological record, whilst providing a promising window into the early biosphere.

See also here

Did life on Earth start due to meteorites splashing into warm little ponds?

by McMaster University, October 2, 2017 in ScinceDaily


Life on Earth began somewhere between 3.7 and 4.5 billion years ago, after meteorites splashed down and leached essential elements into warm little ponds, say scientists. Their calculations suggest that wet and dry cycles bonded basic molecular building blocks in the ponds’ nutrient-rich broth into self-replicating RNA molecules that constituted the first genetic code for life on the planet.