Archives par mot-clé : Precambrian

Plate tectonics may have been active on Earth since the very beginning

by University of Tennessee at Knoxville, September 26, 2018 in ScienceDaily

A new study suggests that plate tectonics — a scientific theory that divides the earth into large chunks of crust that move slowly over hot viscous mantle rock — could have been active from the planet’s very beginning. The new findings defy previous beliefs that tectonic plates were developed over the course of billions of years.

The paper, published in Earth and Planetary Science Letters, has important implications in the fields of geochemistry and geophysics. For example, a better understanding of plate tectonics could help predict whether planets beyond our solar system could be hospitable to life.

“Plate tectonics set up the conditions for life,” said Nick Dygert, assistant professor of petrology and geochemistry in UT’s Department of Earth and Planetary Sciences and coauthor of the study. “The more we know about ancient plate tectonics, the better we can understand how Earth got to be the way it is now.”

Billion-year-old lake deposit yields clues to Earth’s ancient biosphere

by McGill University, July 18, 2018 in ScienceDaily

The findings, published in the journal Nature, represent the oldest measurement of atmospheric oxygen isotopes by nearly a billion years. The results support previous research suggesting that oxygen levels in the air during this time in Earth history were a tiny fraction of what they are today due to a much less productive biosphere.

“It has been suggested for many decades now that the composition of the atmosphere has significantly varied through time,” says Peter Crockford, who led the study as a PhD student at McGill University. “We provide unambiguous evidence that it was indeed much different 1.4 billion years ago.”

The study provides the oldest gauge yet of what earth scientists refer to as “primary production,” in which micro-organisms at the base of the food chain — algae, cyanobacteria, and the like — produce organic matter from carbon dioxide and pour oxygen into the air.

Le Précambrien de l’Afrique de l’Ouest : que d’événements globaux riches d’enseignements

by Alain Préat, 31 mai 2018, Académie Royale des Sciences d’Outre- Mer

Le Précambrien représente 88% de l’histoire de la Terre âgée de 4,567 milliards d’années (Ga).

C’est au cours de cette période peu connue, peu enseignée que se sont déroulés ou mis en place des événements physico-chimiques et biologiques déterminants: différenciation des enveloppes terrestres, tectonique des plaques et premières ‘pangées’ ou supercontinents, champ magnétique, chaînes de montagnes, glaciations, anoxies des bassins, remplacement du CO2-CH4par l’oxygène atmosphérique, formation de gisements (uranium, manganèse, nickel …. et même pétrole), émergence dès 3,8 Ga des procaryotes puis des eucaryotes …

Vu l’absence de fossiles stratigraphiques, et donc de biozones, la stratigraphie du Précambrien est encore très difficile, elle  est intialement basée sur la lithostratigraphie. De grands progrès ont récemment été réalisés grâce à la chimiostratigraphie istotopique (C, O, Sr….) en plus de la radiométrie absolue.

L’exposé se consacrera aux événements sédimentaires liés au Grand Evénement de l’Oxygène il y a environ 2,5-2,1 Ga (Paléoprotérozoïque) et à ceux liés à la ‘Terre Boule de Neige’ (Snowball Earth) avec la glaciation marinoenne il y a 0,635 Ga (Néoprotérozoïque), à partir des séries de l’Afrique de l’Ouest.


Did the transition to plate tectonics cause Neoproterozoic Snowball Earth?

by R.J. Stern and N.M. Miller, December 20, 2017 in TerraNova

When Earth’s tectonic style transitioned from stagnant lid (single plate) to the modern episode of plate tectonics is important but unresolved, and all lines of evidence should be considered, including the climate record. The transition should have disturbed the oceans and atmosphere by redistributing continents, increasing explosive arc volcanism, stimulating mantle plumes and disrupting climate equilibrium established by the previous balance of silicate‐weathering greenhouse gas feedbacks. Formation of subduction zones would redistribute mass sufficiently to cause true polar wander if the subducted slabs were added in the upper mantle at intermediate to high latitudes. The Neoproterozoic Snowball Earth climate crisis may reflect this transition. The transition to plate tectonics is compatible with nearly all proposed geodynamic and oceanographic triggers for Neoproterozoic Snowball Earth events, and could also have contributed to biological triggers. Only extraterrestrial triggers cannot be reconciled with the hypothesis that the Neoproterozoic climate crisis was caused by a prolonged (200–250 m.y.) transition to plate tectonics.