Archives par mot-clé : Extinction

Volcanic eruptions drove ancient global warming event

by Marcus Gutjah et al., August 30,  2017 in PhysOrg


A natural global warming event that took place 56 million years ago was triggered almost entirely by volcanic eruptions that occurred as Greenland separated from Europe during the opening of the North Atlantic Ocean,

The amount of carbon released during this time was vast—more than 30 times larger than all the fossil fuels burned to date and equivalent to all the current conventional and unconventional fossil fuel reserves we could feasibly ever extract.” Ridgwell said.

An unexpected finding was that enhanced organic matter burial was important in ultimately sequestering the released carbon and accelerating the recovery of the Earth’s ecosystem without massive extinctions.

See also here

Dino-killing asteroid could have thrust Earth into two years of darkness

by National Center for Atmospheric Research/University Corporation for Atmospheric Research, August 21, 2017 in ScienceDaily


Tremendous amounts of soot, lofted into the air from global wildfires following a massive asteroid strike 66 million years ago, would have plunged Earth into darkness for nearly two years, new research finds. This would have shut down photosynthesis, drastically cooled the planet, and contributed to the mass extinction that marked the end of the age of dinosaurs.

Underground magma triggered Earth’s worst mass extinction with greenhouse gases

by Howard Lee, geologist, August 9, 2017 in WUWT


Earth’s most severe mass extinction, the “Great Dying,” began 251.94 million years ago at the end of the Permian period, with the loss of more than 90% of marine species. Precise rock dates published in 2014 and 2015 proved that the extinction coincided with the Siberian Traps LIP, an epic outpouring of lava and intrusions of underground magma covering an area of northern Asia the size of Europe.

But those rock dates presented science with a new puzzle: why was the mass extinction event much shorter than the eruptions? And why did the extinction happen some 300,000 years after the lava began to flow?

Flourishing ocean drives the end-Permian marine mass extinction

by Martin Schobben et al., July 2014,


The Permian geologic period that ended the Paleozoic era climaxed around 252 million years ago with a sweeping global mass extinction event in which 90 to 95 percent of marine life became extinct. It would take 30 million years for planetary biodiversity to recover. Understanding the contributing factors of the end-Permian mass extinction is critical to understanding and perhaps mitigating the current anthropogenic climate change.

Earth Is Not in the Midst of a Sixth Mass Extinction

by Peter Brannen, June 14, 2017


“It is absolutely critical to recognize that I am NOT claiming that humans haven’t done great damage to marine and terrestrial [ecosystems], nor that many extinctions have not occurred and more will certainly occur in the near future. But I do think that as scientists we have a responsibility to be accurate about such comparisons.”

Many popular science articles take this as a given, and indeed, there’s something emotionally satisfying about the idea that humans’ hubris and shortsightedness are so profound that we’re bringing down the whole planet with us.

Battered Earth revived by mineral weathering after mass extinction

by University of Tromso, May 5, 2017 in ScienceDaily


Bedrock of Earth got severely beaten up by hothouse climate conditions during one of planet’s mass extinctions some 200 million years ago. But the process also allowed life to bounce back.

The hothouse conditions of this mass extinction caused oceans to eventually become depleted of oxygen, and thus become unbearable to live in. But weathering of silicate in the bedrock of Pangea, and subsequent formation of carbonate, tied up the CO2 into the minerals, slowly removing the greenhouse gas from the atmosphere.

Megafaunal extinctions driven by too much moisture

by University of Adelaide, April 18, 2017 in ScienceDaily


Studies of bones from Ice Age megafaunal animals across Eurasia and the Americas have revealed that major increases in environmental moisture occurred just before many species suddenly became extinct around 11-15,000 years ago. The persistent moisture resulting from melting permafrost and glaciers caused widespread glacial-age grasslands to be rapidly replaced by peatlands and bogs, fragmenting populations of large herbivore grazers.

The idea of moisture-driven extinctions is really exciting because it can also explain why Africa is so different, with a much lower rate of megafaunal extinctions and many species surviving to this day, says Professor Cooper.