Archives par mot-clé : Oxygen

Study: Ancient ocean oxygen levels associated with changing atmospheric carbon dioxide

by Texas A&M University, May 24, 2020 in WUWT

A Texas A&M-led study analyzed ocean floor sediment cores to provide new insights into the relationship between deep ocean oxygenation and atmospheric carbon dioxide levels in the 50,000 years before the last ice age

IMAGE: Deep ocean floor sediment cores hold chemical clues to Earth’s past. view more  Credit: Texas A&M University

Why do carbon dioxide levels in the atmosphere wax and wane in conjunction with the warm and cold periods of Earth’s past? Scientists have been trying to answer this question for many years, and thanks to chemical clues left in sediment cores extracted from deep in the ocean floor, they are starting to put together the pieces of that puzzle.

Recent research suggests that there was enhanced storage of respired carbon in the deep ocean when levels of atmospheric carbon dioxide concentrations were lower than today’s levels. But new research led by a Texas A&M University scientist has reached back even further, for the first time revealing insights into atmospheric carbon dioxide levels in the 50,000 years before the last ice age.

Oxygen depletion in ancient oceans caused major mass extinction

by Florida State University, August. 30, 2019 in ScienceDaily/fromGeology

Late in the prehistoric Silurian Period, around 420 million years ago, a devastating mass extinction event wiped 23 percent of all marine animals from the face of the planet.

For years, scientists struggled to connect a mechanism to this mass extinction, one of the 10 most dramatic ever recorded in Earth’s history. Now, researchers from Florida State University have confirmed that this event, referred to by scientists as the Lau/Kozlowskii extinction, was triggered by an all-too-familiar culprit: rapid and widespread depletion of oxygen in the global oceans.

Amazon Wildfires Are Horrifying, But They’re Not Destroying Earth’s Oxygen Supply

by Scott Denning, August 22, 2019 in LiveSci=nce

Fires in the Amazon rainforest have captured attention worldwide in recent days. Brazilian President Jair Bolsonaro, who took office in 2019, pledged in his campaign to reduce environmental protection and increase agricultural development in the Amazon, and he appears to have followed through on that promise.

The resurgence of forest clearing in the Amazon, which had decreased more than 80% following a peak in 2004, is alarming for many reasons. Tropical forests harbor many species of plants and animals found nowhere else. They are important refuges for indigenous people, and contain enormous stores of carbon as wood and other organic matter that would otherwise contribute to the climate crisis.

Some media accounts have suggested that fires in the Amazon also threaten the atmospheric oxygen that we breathe. French President Emmanuel Macron tweeted on Aug. 22 that “the Amazon rain forest — the lungs which produces 20% of our planet’s oxygen — is on fire.”

Don’t hold your breath

Even though plant photosynthesis is ultimately responsible for breathable oxygen, only a vanishingly tiny fraction of that plant growth actually adds to the store of oxygen in the air. Even if all organic matter on Earth were burned at once, less than 1% of the world’s oxygen would be consumed.

In sum, Brazil’s reversal on protecting the Amazon does not meaningfully threaten atmospheric oxygen. Even a huge increase in forest fires would produce changes in oxygen that are difficult to measure. There’s enough oxygen in the air to last for millions of years, and the amount is set by geology rather than land use. The fact that this upsurge in deforestation threatens some of the most biodiverse and carbon-rich landscapes on Earth is reason enough to oppose it.

Low oxygen levels could temporarily blind marine invertebrates

by Scripps Institution of Oceanography at the University of California San Diego, May 8, 2019 in ScienceDaily

These results, published recently in the Journal of Experimental Biology, are the first demonstration that vision in marine invertebrates is highly sensitive to the amount of available oxygen in the water.

Oxygen levels in the ocean are changing globally from natural and human-induced processes. Many marine invertebrates depend on vision to find food, shelter, and avoid predators, particularly in their early life stages when many are planktonic. This is especially true for crustaceans and cephalopods, which are common prey items for other animals and whose larvae are highly migratory in the water column.

Research on terrestrial animals has shown that low oxygen levels can affect vision. In fact, humans can lose visual function in low oxygen conditions. Pilots flying at high altitude, for instance, have been shown to experience vision impairment if aircraft fail to supplement cockpits with additional oxygen. Additionally, health problems such as high blood pressure and strokes, both associated with oxygen loss, can damage vision.

Oxygen could have been available to life as early as 3.5 billion years ago

by Imperial College, November 27, 2018 in ScienceDaily

The levels of oxygen dramatically rose in the atmosphere around 2.4 billion years ago, but why it happened then has been debated. Some scientists think that 2.4 billion years ago is when organisms called cyanobacteria first evolved, which could perform oxygen-producing (oxygenic) photosynthesis.

Other scientist think that cyanobacteria evolved long before 2.4 billion years ago but something prevented oxygen from accumulating in the air.

Cyanobacteria perform a relatively sophisticated form of oxygenic photosynthesis — the same type of photosynthesis that all plants do today. It has therefore been suggested that simpler forms of oxygenic photosynthesis could have existed earlier, before cyanobacteria, leading to low levels of oxygen being available to life.

Now, a research team led by Imperial College London have found that oxygenic photosynthesis arose at least one billion years before cyanobacteria evolved. Their results, published in the journal Geobiology, show that oxygenic photosynthesis could have evolved very early in Earth’s 4.5-billion-year history.

See also here

Mars: Oxygen-rich, life-supporting liquid water?

by California Institute of Technology, October 22, 2018 in ScienceDaily

A team led by scientists at Caltech and the Jet Propulsion Laboratory (JPL), which Caltech manages for NASA, has calculated that if liquid water exists on Mars, it could — under specific conditions — contain more oxygen than previously thought possible. According to the model, the levels could even theoretically exceed the threshold needed to support simple aerobic life.

That finding runs contrary to the current, accepted view of Mars and its potential for hosting habitable environments. The existence of liquid water on Mars is not a given. Even if it is there, researchers have long dismissed the idea that it might be oxygenated, given that Mars’s atmosphere is about 160 times thinner than that of Earth and is mostly carbon dioxide.

Billion-year-old lake deposit yields clues to Earth’s ancient biosphere

by McGill University, July 18, 2018 in ScienceDaily

The findings, published in the journal Nature, represent the oldest measurement of atmospheric oxygen isotopes by nearly a billion years. The results support previous research suggesting that oxygen levels in the air during this time in Earth history were a tiny fraction of what they are today due to a much less productive biosphere.

“It has been suggested for many decades now that the composition of the atmosphere has significantly varied through time,” says Peter Crockford, who led the study as a PhD student at McGill University. “We provide unambiguous evidence that it was indeed much different 1.4 billion years ago.”

The study provides the oldest gauge yet of what earth scientists refer to as “primary production,” in which micro-organisms at the base of the food chain — algae, cyanobacteria, and the like — produce organic matter from carbon dioxide and pour oxygen into the air.

Volcanic activity, declining ocean oxygen triggered mass extinction of ancient organisms

by Florida State University, June 11, 2018 in ScienceDaily

Global climate change, fueled by skyrocketing levels of atmospheric carbon dioxide, is siphoning oxygen from today’s oceans at an alarming pace — so fast that scientists aren’t entirely sure how the planet will respond.


Millions of years ago, scientists discovered, powerful volcanoes pumped Earth’s atmosphere full of carbon dioxide, draining the oceans of oxygen and driving a mass extinction of marine organisms.