Global Energy & CO2 Status Report

by IEA, March 2019 (.pdf)

Key Findings 2018

Global energy consumption in 2018 increased at nearly twice the average rate of growth since 2010, driven by a robust global economy and higher heating and cooling needs in some parts of the world. Demand for all fuels increased, led by natural gas, even as solar and wind posted double-digit growth. Higher electricity demand was responsible for over half of the growth in energy needs. Energy efficiency saw lacklustre improvement.

Energy-related CO2 emissions rose 1.7% to a historic high of 33.1 Gt CO2. While emissions from all fossil fuels increased, the power sector accounted for nearly two-thirds of emissions growth. Coal use in power alone surpassed 10 Gt CO2, mostly in Asia. China, India, and the United States accounted for 85% of the net increase in emissions, while emissions declined for Germany, Japan, Mexico, France and the United Kingdom.

Oil demand rose by 1.3% in 2018, led by strong growth in the United States. The start-up of large petrochemical projects drove product demand, which partially offset a slowdown in growth in gasoline demand. The United States and China showed the largest overall growth, while demand fell in Japan and Korea and was stagnant in Europe.

Natural gas consumption grew by an estimated 4.6%, its largest increase since 2010 when gas demand bounced back from the global financial crisis. This second consecutive year of strong growth, following a 3% rise in 2017, was driven by growing energy demand and substitution from coal. The switch from coal to gas accounted for over one-fifth of the rise in gas demand. The United States led the growth followed by China.

Coal demand grew for a second year, but its role in the global mix continued to decline. Last year’s 0.7% increase was significantly slower than the 4.5% annual growth rate seen in the period 2000- 10. But while the share of coal in primary energy demand and in electricity generation slowly continues to decrease, it still remains the largest source of electricity and the second-largest source of primary energy.

Nuclear Power Can Save the World

by J.S. Goldstein et al., April 6, 2019

As young people rightly demand real solutions to climate change, the question is not what to do — eliminate fossil fuels by 2050 — but how. Beyond decarbonizing today’s electric grid, we must use clean electricity to replace fossil fuels in transportation, industry and heating. We must provide for the fast-growing energy needs of poorer countries and extend the grid to a billion people who now lack electricity. And still more electricity will be needed to remove excess carbon dioxide from the atmosphere by midcentury.


To Peak or Not to Peak? That is the question.

by Mike Jonas, April 8, 2019 in WUWT

A lot has been written about Peak Oil recently – perhaps more in comments than in WUWT articles themselves – and the “Not to Peak”-ers seem to be in the ascendancy. In other words, the opinions that “Peak Oil” is a fantasy and/or oil production will keep increasing for a century or more seem to be dominant.

But just how realistic are the “Not to Peak”-ers?

I had a look back at my article of 4 years ago (Peak Oil Re-visited), and I’m pretty comfortable with what I said back then. NB. I defined “Peak Oil” as When the rate of oil production reaches its maximum. With this definition, Peak Oil is not when we run out of oil, and it is not when we can’t increase the rate of oil production. If you want to use one of those other definitions then different rules apply. And I’m only talking about oil, not about oil and gas, and not about fossil fuels generally.

What I said in 2015 was:

  • The reason for oil production reaching its maximum is not specified.
  • Peak Oil is not necessarily a disaster, it could even be a positive.
  • One idea which surely is not open to argument is the fact that oil production will peak.
  • Predicting Peak Oil has always been an unrewarding exercise. People have predicted Peak Oil for over a century and have been wrong every time.
  • The principal factors affecting oil supply are: Geology, Politics, Demand, Price, Technology.
  • In spite of economic booms and busts, oil demand has been relatively inelastic.
  • Although Peak Oil may occur after say 2040, it could well be much earlier.

The third bullet above (oil production will peak) was justified by this graph, which looked at past and likely future oil production on a scale of thousands of years:


The shale revolution (as BP calls it) has made a difference, but it still can’t dramatically alter the shape of the graph in Figure 1. Basically, it can push the peak up, and it can elongate the tail, but it can’t move the peak very far to the right.

Figure 1. World Total Fossil Fuel Consumption, past and predicted – the long view.