Tous les articles par Alain Préat

Full-time professor at the Free University of Brussels, Belgium • Department of Earth Sciences and Environment Res. Grp. - Biogeochemistry & Modeling of the Earth System Sedimentology & Basin Analysis • Alumnus, Collège des Alumni, Académie Royale de Sciences, des Lettres et des Beaux Arts de Belgique (mars 2013). • Prof. Invited, Université de Mons-Hainaut (2010-present-day) • Prof. Coordinator and invited to the Royal Academy of Sciences of Belgium (Belgian College) (2009- present day) • Prof. partim to the DEA (third cycle) led by the University of Lille (9 universities from 1999 to 2004) - Prof. partim at the University of Paris-Sud/Orsay, European-Socrates Agreement (1995-1998) • Prof. partim at the University of Louvain, Convention ULB-UCL (1993-2000) • Since 2015 : Member of Comité éditorial de la Revue Géologie de la France • Since 2014 : Regular author of texts for ‘la Revue Science et Pseudosciences’ • Many field works (several weeks to 2 months) (Meso- and Paleozoic carbonates, Paleo- to Neoproterozoic carbonates) in Europe, USA (Nevada), Papouasia (Holocene), North Africa (Algeria, Morrocco, Tunisia), West Africa (Gabon, DRC, Congo-Brazzaville, South Africa, Angola), Iraq... Recently : field works (3 to 5 weeks) Congo- Brazzaville 2012, 2015, 2016 (carbonate Neoproterozoic). Degree in geological sciences at the Free University of Brussels (ULB) in 1974, I went to Algeria for two years teaching mining geology at the University of Constantine. Back in Belgium I worked for two years as an expert for the EEC (European Commission), first on the prospecting of Pb and Zn in carbonate environments, then the uranium exploration in Belgium. Then Assistant at ULB, Department of Geology I got the degree of Doctor of Sciences (Geology) in 1985. My thesis, devoted to the study of the Devonian carbonate sedimentology of northern France and southern Belgium, comprised a significant portion of field work whose interpretation and synthesis conducted to the establishment of model of carbonate platforms and ramps with reefal constructions. I then worked for Petrofina SA and shared a little more than two years in Angola as Director of the Research Laboratory of this oil company. The lab included 22 people (micropaleontology, sedimentology, petrophysics). My main activity was to interpret facies reservoirs from drillings in the Cretaceous, sometimes in the Tertiary. I carried out many studies for oil companies operating in this country. I returned to the ULB in 1988 as First Assistant and was appointed Professor in 1990. I carried out various missions for mining companies in Belgium and oil companies abroad and continued research, particularly through projects of the Scientific Research National Funds (FNRS). My research still concerns sedimentology, geochemistry and diagenesis of carbonate rocks which leads me to travel many countries in Europe or outside Europe, North Africa, Papua New Guinea and the USA, to conduct field missions. Since the late 90's, I expanded my field of research in addressing the problem of mass extinctions of organisms from the Upper Devonian series across Euramerica (from North America to Poland) and I also specialized in microbiological and geochemical analyses of ancient carbonate series developing a sustained collaboration with biologists of my university. We are at the origin of a paleoecological model based on the presence of iron-bacterial microfossils, which led me to travel many countries in Europe and North Africa. This model accounts for the red pigmentation of many marble and ornamental stones used in the world. This research also has implications on the emergence of Life from the earliest stages of formation of Earth, as well as in the field of exobiology or extraterrestrial life ... More recently I invested in the study from the Precambrian series of Gabon and Congo. These works with colleagues from BRGM (Orléans) are as much about the academic side (consequences of the appearance of oxygen in the Paleoproterozoic and study of Neoproterozoic glaciations) that the potential applications in reservoir rocks and source rocks of oil (in collaboration with oil companies). Finally I recently established a close collaboration with the Royal Institute of Natural Sciences of Belgium to study the susceptibility magnetic signal from various European Paleozoic series. All these works allowed me to gain a thorough understanding of carbonate rocks (petrology, micropaleontology, geobiology, geochemistry, sequence stratigraphy, diagenesis) as well in Precambrian (2.2 Ga and 0.6 Ga), Paleozoic (from Silurian to Carboniferous) and Mesozoic (Jurassic and Cretaceous) rocks. Recently (2010) I have established a collaboration with Iraqi Kurdistan as part of a government program to boost scientific research in this country. My research led me to publish about 180 papers in international and national journals and presented more than 170 conference papers. I am a holder of eight courses at the ULB (5 mandatory and 3 optional), excursions and field stages, I taught at the third cycle in several French universities and led or co-managed a score of 20 Doctoral (PhD) and Post-doctoral theses and has been the promotor of more than 50 Masters theses.

Thanks to Shale, U.S. CO2 Emissions Continued to Decline in 2016

by Nicole Jacobs, October 3, 2017 in ClimateChangeDispatch

The report, which bases its CO2 emissions estimates off International Energy Agency (IEA) and BP data through 2016, found the global CO2 levels essentially remained flat in 2015 and 2016. As BP noted earlier this year, the global trend is “well below the 10-year average growth of 1.6% and a third consecutive year of below-average growth” and that “during 2014-16, average emissions growth has been the lowest over any three-year period since 1981-83.”

Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa

by M. Khodri et al., October 3,  2017 in Nature

Stratospheric aerosols from large tropical explosive volcanic eruptions backscatter shortwave radiation and reduce the global mean surface temperature. Observations suggest that they also favour an El Niño within 2 years following the eruption. Modelling studies have, however, so far reached no consensus on either the sign or physical mechanism of El Niño response to volcanism

Global Temperature Report: September 2017

by Anthony Watts, October 2, 2017 in WUWT

Warmest September in satellite temperature record

Boosted by warmer than normal water in the equatorial eastern Pacific Ocean that peaked in June and July, global average temperatures in the atmosphere rose to record levels in September, according to Dr. John Christy, director of the Earth System Science Center at The University of Alabama in Huntsville. Not only was it the warmest September on record, it was also the warmest month (compared to seasonal norms) in the 38-year satellite temperature record that wasn’t associated with an “officially recognized” El Niño Pacific Ocean warming event.

Global nickel anomaly links Siberian Traps eruptions and the latest Permian mass extinction

by Michael R. Rampino et al., October 2017, in Nature

Anomalous peaks of nickel abundance have been reported in Permian-Triassic boundary sections in China, Israel, Eastern Europe, Spitzbergen, and the Austrian Carnic Alps. New solution ICP-MS results of enhanced nickel from P-T boundary sections in Hungary, Japan, and Spiti, India suggest that the nickel anomalies at the end of the Permian were a worldwide phenomenon.

See also here and here

Did life on Earth start due to meteorites splashing into warm little ponds?

by McMaster University, October 2, 2017 in ScinceDaily

Life on Earth began somewhere between 3.7 and 4.5 billion years ago, after meteorites splashed down and leached essential elements into warm little ponds, say scientists. Their calculations suggest that wet and dry cycles bonded basic molecular building blocks in the ponds’ nutrient-rich broth into self-replicating RNA molecules that constituted the first genetic code for life on the planet.

Tropical Cyclone Trends

by Australian Gov. Bureau of Meteorology, September 2017

Tropical cyclones in the Australian region are influenced by a number of factors, and in particular variations in the El Niño – Southern Oscillation. In general, more tropical cyclones cross the coast during La Niña years, and fewer during El Niño years.

Analysis of historical tropical cyclone data has limitations due to a number of changes in observing practices and technology that have occurred over time. With new and improved meteorological satellites our ability to detect tropical cyclones has improved, as has our ability to differentiate tropical cyclones from other tropical weather systems such as monsoon depressions, which in the past may have been incorrectly named as tropical cyclones. A particularly important change occurred in the late 1970s when regular satellite images became first available from geostationary satellites above the Earth’s equator.

See also here

Incredible moment more than 230 polar bears descend on a Russian beach to feast on a giant whale carcass

by Will Stewart,  September 29, 2017 in ‘The Sun’ 

The extraordinary sight was witnessed by tourists on an Arctic cruise aboard the Finnish-built MV Akademik Shokalskiy.

A source at Wrangel Island Nature Reserve said: “There were at least 230 polar bears, including single males, single females, mothers with cubs and even two mothers with four cubs each.”

Experts called the sight of so many polar bears together “unique”. The huge number could in fact amount to as much one per cent of the entire world’s population of the creatures.

Update: The 2017 Explosion Of Non-Hockey Stick Graphs Continues

by K.  Richard, September 28, 2017 in NoTricksZone

It was four months ago that an article entitled  80 Graphs From 58 New (2017) Papers Invalidate Claims Of Unprecedented Global-Scale Modern Warmingappeared on this website.  The article received international attention and was “shared” tens of thousands of times.

In the last 4 months,  40 more graphs taken from 30 more new peer-reviewed scientific papers have made their way into the ever-growing volume of evidence that today’s climate is not only not unprecedented or unusual in the context of the last millennium, but modern temperature values are still among the coldest of the last 10,000 years.

Catastrophic’ sea level rise in the past may have drowned corals in Hawaii

by University of Sydney, September 28, 2017 in WUWT

Recent findings suggest that episodes of very rapid sea-level rise of about 20m in less than 500 years occurred in the last deglaciation, caused by periods of catastrophic ice-sheet collapse as the Earth warmed after the last ice age about 20,000 years ago.

Lead author, PhD candidate at the University of Sydney, Kelsey Sanborn, has shown this sea-level rise event was associated with “drowning” or death of coral reefs in Hawaii.

See also here

Lost continent of Zealandia: Scientists return from expedition to sunken land

by National Science Foundation, September 26, 2017  in ScienceDaily

Expedition co-chief scientist Rupert Sutherland of Victoria University of Wellington in New Zealand said researchers had believed that Zealandia was submerged when it separated from Australia and Antarctica about 80 million years ago.

Big geographic changes across northern Zealandia, which is about the same size as India, have implications for understanding questions such as how plants and animals dispersed and evolved in the South Pacific.