Tous les articles par Alain Préat

Full-time professor at the Free University of Brussels, Belgium • Department of Earth Sciences and Environment Res. Grp. - Biogeochemistry & Modeling of the Earth System Sedimentology & Basin Analysis • Alumnus, Collège des Alumni, Académie Royale de Sciences, des Lettres et des Beaux Arts de Belgique (mars 2013). • Prof. Invited, Université de Mons-Hainaut (2010-present-day) • Prof. Coordinator and invited to the Royal Academy of Sciences of Belgium (Belgian College) (2009- present day) • Prof. partim to the DEA (third cycle) led by the University of Lille (9 universities from 1999 to 2004) - Prof. partim at the University of Paris-Sud/Orsay, European-Socrates Agreement (1995-1998) • Prof. partim at the University of Louvain, Convention ULB-UCL (1993-2000) • Since 2015 : Member of Comité éditorial de la Revue Géologie de la France • Since 2014 : Regular author of texts for ‘la Revue Science et Pseudosciences’ • Many field works (several weeks to 2 months) (Meso- and Paleozoic carbonates, Paleo- to Neoproterozoic carbonates) in Europe, USA (Nevada), Papouasia (Holocene), North Africa (Algeria, Morrocco, Tunisia), West Africa (Gabon, DRC, Congo-Brazzaville, South Africa, Angola), Iraq... Recently : field works (3 to 5 weeks) Congo- Brazzaville 2012, 2015, 2016 (carbonate Neoproterozoic). Degree in geological sciences at the Free University of Brussels (ULB) in 1974, I went to Algeria for two years teaching mining geology at the University of Constantine. Back in Belgium I worked for two years as an expert for the EEC (European Commission), first on the prospecting of Pb and Zn in carbonate environments, then the uranium exploration in Belgium. Then Assistant at ULB, Department of Geology I got the degree of Doctor of Sciences (Geology) in 1985. My thesis, devoted to the study of the Devonian carbonate sedimentology of northern France and southern Belgium, comprised a significant portion of field work whose interpretation and synthesis conducted to the establishment of model of carbonate platforms and ramps with reefal constructions. I then worked for Petrofina SA and shared a little more than two years in Angola as Director of the Research Laboratory of this oil company. The lab included 22 people (micropaleontology, sedimentology, petrophysics). My main activity was to interpret facies reservoirs from drillings in the Cretaceous, sometimes in the Tertiary. I carried out many studies for oil companies operating in this country. I returned to the ULB in 1988 as First Assistant and was appointed Professor in 1990. I carried out various missions for mining companies in Belgium and oil companies abroad and continued research, particularly through projects of the Scientific Research National Funds (FNRS). My research still concerns sedimentology, geochemistry and diagenesis of carbonate rocks which leads me to travel many countries in Europe or outside Europe, North Africa, Papua New Guinea and the USA, to conduct field missions. Since the late 90's, I expanded my field of research in addressing the problem of mass extinctions of organisms from the Upper Devonian series across Euramerica (from North America to Poland) and I also specialized in microbiological and geochemical analyses of ancient carbonate series developing a sustained collaboration with biologists of my university. We are at the origin of a paleoecological model based on the presence of iron-bacterial microfossils, which led me to travel many countries in Europe and North Africa. This model accounts for the red pigmentation of many marble and ornamental stones used in the world. This research also has implications on the emergence of Life from the earliest stages of formation of Earth, as well as in the field of exobiology or extraterrestrial life ... More recently I invested in the study from the Precambrian series of Gabon and Congo. These works with colleagues from BRGM (Orléans) are as much about the academic side (consequences of the appearance of oxygen in the Paleoproterozoic and study of Neoproterozoic glaciations) that the potential applications in reservoir rocks and source rocks of oil (in collaboration with oil companies). Finally I recently established a close collaboration with the Royal Institute of Natural Sciences of Belgium to study the susceptibility magnetic signal from various European Paleozoic series. All these works allowed me to gain a thorough understanding of carbonate rocks (petrology, micropaleontology, geobiology, geochemistry, sequence stratigraphy, diagenesis) as well in Precambrian (2.2 Ga and 0.6 Ga), Paleozoic (from Silurian to Carboniferous) and Mesozoic (Jurassic and Cretaceous) rocks. Recently (2010) I have established a collaboration with Iraqi Kurdistan as part of a government program to boost scientific research in this country. My research led me to publish about 180 papers in international and national journals and presented more than 170 conference papers. I am a holder of eight courses at the ULB (5 mandatory and 3 optional), excursions and field stages, I taught at the third cycle in several French universities and led or co-managed a score of 20 Doctoral (PhD) and Post-doctoral theses and has been the promotor of more than 50 Masters theses.

The Rise and Fall of the Catastrophic Man-Made Global Warming Theory

by Ron Clutz, January 12, 2010 in ClimateChangeDispatch

The Pomeroy essay focuses on theories in the field of psychology and describes stages through which they rise, become accepted, challenged and discarded.

It has long seemed to me that global warming/climate change theory properly belongs in the field of social studies and thus should demonstrate a similar cycle.

See also here

Fracking firm Cuadrilla to reignite West Sussex plans

by Jillian Ambrose, January 9, 2018, in TheTelegraph Business

Cuadrilla will be allowed to test wells in the Sussex countryside until 2021 to see whether the fossil fuel flows from underground limestone rock could be a commercial source of homegrown energy.

The unanimous approval of the county council does not include permission to use the controversial process of hydraulic fracturing, or fracking, but is nonetheless likely to reignite local opposition.

A candid climate scientist explains how to ‘fix’ the debate

by Larry Kummer, January 11, 2018 in WUWT

Summary: Here are brief excerpts and my comments from a speech by an eminent climate scientist. It illuminates important aspects about one of the great public policy debates of our time. He was speaking candidly to his peers, but we can also learn much from it.

“Some Thoughts from a Reluctant Participant”

Presentation by Richard Alley.

At the Forum on Transforming Communication in the Weather, Water, and Climate Enterprise — Focusing on Challenges Facing Our Sciences.

Given at the 2018 Annual Conference of the American Meteorological Society, 7 January 2018.

Extinction and global warming 250 million years ago

by U. of Bristol, January 10, 2018 in A Watts, WUWT

One of the key effects of the end-Permian mass extinction, 252 million years ago, was rapid heating of tropical waters and atmospheres.

How this affected life on land has been uncertain until now.

In a new study published today, Dr Massimo Bernardi and Professor Mike Benton from the School of Earth Sciences at the University of Bristol show how early reptiles were expelled from the tropics.

On Science and Nonscience

by Neil Lock, January 11, 2018 in WUWT

What is science?

According to Webster’s, science is: “knowledge or a system of knowledge covering general truths or the operation of general laws.”

The way I see it, science is a method of discovering truths. For the idea to make any sense at all, though, we need first to agree that scientific truth is objective. Now, a particular truth or fact may of course be unknown, or poorly understood, or wrongly apprehended, at a particular time. But in science, one man’s truth must be the same as another’s. (…)

Study: Climate models underestimate cooling effect of daily cloud cycle

by Princeton University, January 10, 2018 in A. Watts WUWT

Princeton University researchers have found that the climate models scientists use to project future conditions on our planet underestimate the cooling effect that clouds have on a daily — and even hourly — basis, particularly over land.

The researchers report in the journal Nature Communications Dec. 22 that models tend to factor in too much of the sun’s daily heat, which results in warmer, drier conditions than might actually occur. The researchers found that inaccuracies in accounting for the diurnal, or daily, cloud cycle did not seem to invalidate climate projections, but they did increase the margin of error for a crucial tool scientists use to understand how climate change will affect us.