Les deux plus grandes révolutions des espèces au cours des temps géologiques

Robert Paris, 2016


Dans l’histoire des espèces vivantes, il y a eu des périodes d’explosion de la biodiversité (comme Burgess et Ediacara). Ainsi l’explosion de biodiversité, dite de Burgess, qui a produit tous les embranchements du vivant, qui s’est déroulée à l’époque appelée le Cambrien (entre 542 et 530 Millions d’années), a suivi la disparition des animaux de l’époque appelée Ediacara (entre 635 et 541 Millions d’années).

La vie a connu de grands sauts historiques comme le passage de la vie sans oxygène à la vie fondée sur l’oxygène, de la vie unicellulaire à la vie pluricellulaire, et les grandes explosions de diversité comme celles d’Ediacara et Burgess.

Egalement : De Burgess à Franceville (Gabon) , les plus anciennes traces de pluricellulaires

Egalement : le Gabon à aube de la Vie

 

International Commission on Stratigraphy

The International Commission on Stratigraphy is the largest and oldest constituent scientific body in the International Union of Geological Sciences (IUGS). Its primary objective is to precisely define global units (systems, series, and stages) of the International Chronostratigraphic Chart that, in turn, are the basis for the units (periods, epochs, and age) of the International Geologic Time Scale; thus setting global standards for the fundamental scale for expressing the history of the Earth.

See also  Episode : Journal of International Geoscience

 

Les sociétés méditerranéennes à l’épreuve du climat 1500-1850

Prof. Emmanuel Granier

(Historien du climat, Institut Universitaire de France), 2011


L’étude concerne l’histoire du climat dans le bassin méditerranéen septentrional (Italie, France, Espagne) entre les XVIe et XIXe siècles. Préalablement, elle présente un état de l’art dans les domaines historiographique, documentaire et méthodologique pour les pays de l’Europe méditerranéenne. Puis, ce travail aborde la question des fluctuations en proposant successivement des reconstructions instrumentales et phénologiques (blé, olives et vendanges).

Selon E. Granier, l’espérance de vie moyenne d’un événement anormal dans la mémoire des gens est de l’ordre de 2 à 5 ans.

Quelles énergies dans le monde pour 2050?

Alain Fuch, Président du CNRS, Janvier 2017


La crainte d’une pénurie de ressources fossiles s’est considérablement éloignée aujourd’hui avec la découverte récente de nouveaux gisements de pétrole et de gaz. Avec des énergies fossiles très bon marché, une volonté politique forte et coordonnée des États est indispensable pour accélérer la transformation de notre bouquet énergétique et de nos modes de consommation et ainsi limiter les émissions anthropiques de gaz à effet de serre (GES) qui contribuent au réchauffement climatique.

….

Tenter ne serait-ce que d’esquisser l’évolution du mix énergétique mondial jusqu’à l’horizon 2050 est un exercice particulièrement périlleux pour un scientifique tant le nombre de facteurs peu ou pas maîtrisables est important. Les incertitudes sont d’autant plus grandes que l’objectif en termes de réduction d’émissions est ambitieux et lointain. Au cours des 25 dernières années, en dépit de l’accroissement de la consommation d’énergie primaire (de 9 à 14 Gtep environ) le mix énergétique mondial a très peu évolué avec une part des énergies fossiles qui est restée voisine de 80%, dans la consommation primaire, contre seulement 14% pour les énergies renouvelables et 5 à 6% pour le nucléaire.

La Tectonique des Plaques : Une Révolution dans les Sciences de la Terre

Prof. (émer.) Daniel Demaiffe, Université Libre de Bruxelles, 2011


Remarquable synthèse de la tectonique des plaques

La tectonique des plaques telle que nous la comprenons actuellement rend compte de l’histoire de la Terre, aussi bien celle des océans que celle des continents, au cours des derniers 200 Ma. Cette théorie de la mobilité des masses continentales et de l’expansion des fonds océaniques permet d’expliquer l’évolution des plaques lithosphériques sur le long terme. Tuzo Wilson est le premier à avoir formalisé cette évolution (1966) en introduisant le concept de cycle, connu désormais dans la littérature sous l’appellation de cycle de Wilson. Ce cycle résume l’histoire d’un domaine océanique en une série de stades successifs: stade embryonnaire (Mer rouge), stade d’océan jeune (golfe de Basse-Californie), stade de maturité (océan Atlantique), stade de déclin (début des subductions : bassins marginaux du Pacifique), stade terminal de quasi fermeture (la Méditerranée depuis 30 Ma) et stade collisionnel (plateau du Tibet et Himalaya) aboutissant à l’amalgamation de différents blocs continentaux, à la surrection de vastes chaînes de montagnes et à la formation éventuelle de suture ophiolitique.

Des versions animées du déplacement des continents à travers les temps géologiques sont disponibles sur le web (Université de Berkeley), cf premier lien ci-dessous.
Geology : Plate Tectonics

A history of supercontinents on planet Earth

Combien de supercontinents depuis la formation de la Terre?

 

Les Erreurs de Mesure et de Consolidation Associées aux Mesures de Température et leurs Proxies

Prof. (émer.) Dr. Ir. Henri A. Masson, Décembre 2016


Le contexte  

Depuis plusieurs décennies maintenant, un débat intense a lieu autour de ce qu’il convient d’appeler la « controverse climatique » : les émissions de gaz à effet de serre anthropiques ont-elles une influence significative sur le « réchauffement-changement-dérèglement » climatique ? Cette controverse secoue le petit monde scientifique de la climatologie, chacune des parties affublant, au passage, l’autre d’épithètes injurieux, les « réchauffistes-alarmistes » s’opposant aux « charlatans-climato-sceptiques-négationnistes ».

La querelle serait anecdotique, si le monde politique ne s’était emparé du sujet et n’avait décidé, dans la précipitation (et souvent suite à un lobbying intense des partis écologiques monnayant ainsi leur participation à un gouvernement de coalition) d’imposer diverses « taxes carbone » et autres « outils de marché », permettant ainsi de distribuer de généreux subsides aux installations d’énergies dites renouvelables, ainsi qu’aux recherches visant à démontrer l’existence d’un effet de serre (anthropique) significatif dans l’atmosphère et de « prédire –projeter » son importance sur le siècle à venir. Sans oublier les contributions énormes promises par les pays développés à un « Fond Vert », censé les distribuer généreusement aux pays en voie de développement, officiellement pour leur permettre de contribuer à « sauver la planète », mais, en réalité, au nom d’une certaine compensation du « pillage colonial des ressources naturelles » commis par ces pays développés, au cours des siècles précédents.

Tout cela a évidemment un prix pour le citoyen lambda des pays développés : taxes supplémentaires, augmentation de la facture énergétique et des frais de transport, diversion d’une partie du budget de l’Etat, au détriment d’autres fonctions qui pourraient s’avérer plus urgentes et importantes. Ces mesures s’avèrent aussi profondément anti-sociales car elles affectent plus lourdement les ménages aux revenus les plus modestes, pour lesquels la facture énergétique et les frais de transport représentent une part plus importante de leur budget. Certains ménages se trouvent ainsi réduits à choisir entre ne pas chauffer leur habitation ou devoir rogner sur les budgets de nourriture et de soins. A l’usage, il est aussi apparu difficile de rationaliser-quantifier-comparer ces mesures en faisant usage d’un critère de « coût social du carbone », les méthodes d’analyse par coûts-bénéfices qui sous-tendent cette approche donnant des résultats aussi divergents que contestables.

Enfin, par nature, la plupart des énergies dites renouvelables (éolien, solaire, hydraulique) sont intermittentes et, si elles contribuent significativement au « mix énergétique », elles doivent donc impérativement être doublées par des unités d’appoint (nucléaires ou utilisant des combustibles fossiles), afin d’éviter des « black-outs » qui sans cela seraient inévitables. Ces unités d’appoint voient leur rentabilité affectée, car elles tournent forcément elles-mêmes de façon intermittente, étant utilisées uniquement pour compenser les carences des énergies renouvelables, alors qu’elles, elles pourraient parfaitement fonctionner en continu. Il faut encore tenir compte des nombreuses lignes électriques à tirer et des transformateurs à installer pour connecter au réseau les installations d’énergie renouvelable, dispersées et de puissance individuelle négligeable par rapport à la puissance d’une centrale conventionnelle. Il faut enfin tenir compte de la complexité de gestion d’un réseau sur lequel viennent se connecter un grand nombre de sources électriques intermittentes et relativement imprédictibles même à court terme. Tout cela fait littéralement « exploser » le coût de l’électricité.

Les bonnes questions à se poser

Certaines questions relatives à la controverse climatique ont trouvé un large écho dans les médias et ont déjà été largement débattues, dans la littérature (éventuellement ‘peer reviewed’) et sur des blogs spécialisés (sans qu’un réel consensus n’ait été trouvé entre les parties, jusqu’à présent) :

  • Comment démontrer l’existence d’un effet de serre (anthropique) au sein de l’atmosphère ?
  • Quelles seraient les conséquences pour le climat, mais aussi pour la biodiversité, les activités humaines, le niveau de la mer, les évènements climatiques extrêmes, etc., d’un doublement de la concentration de CO2 dans l’atmosphère ?
  • L’implantation massive d’énergies renouvelables va-t-elle contribuer significativement à une réduction de la concentration des gaz à effet de serre dans l’atmosphère, et à quel coût ?

D’autres questions sont tellement complexes qu’elles n’ont pas encore reçu de réponse convaincante, à ce jour (« the science is NOT settled »)

  • Comment démontrer l’existence du lien de causalité liant les émissions de CO2 (anthropiques) à un éventuel réchauffement climatique ? Comment définir le sens de ce lien de causalité ? Ce lien est-il linéaire et instantané ou le système possède-t-il une « mémoire », le faisant réagir avec un certain retard. Enfin et surtout, entre les concentrations atmosphériques de CO2 et la température, quelle est la cause et quel est l’effet ?
  • Quel sont exactement les flux de CO2 et d’énergie, au sein du système extrêmement complexe que constitue l’ensemble « atmosphère-océan-terre » sur lequel viennent se greffer des systèmes tout aussi complexes de biosphère, géophysique (géothermie, volcans, tremblements de terre, mouvements tectoniques, etc.) et astrophysique (gravité et électro-magnétisme solaire, planétaire voire cosmique), et quelles sont la nature et l’importance des contributions anthropiques?
  • Quelle est l’importance relative des mécanismes convectifs et conductifs existants au sein du système climatique par rapport aux mécanismes radiatifs (uniquement) pris en compte par les modèles « alarmistes » ?

Enfin, certaines questions se rapportant aux méthodes de recherche et de consolidation de données utilisées en climatologie n’ont pas été abordées avec suffisamment d’attention et d’esprit critique, et méritent qu’on s’y attarde quelque peu :

  • Comment mesurer un éventuel réchauffement climatique global ? Une « anomalie globale» de température a-t-elle un sens ?
  • Pourquoi les données expérimentales relevées par les « réalistes-sceptiques » contredisent-elles les « prévisions-projections » des modèles climatiques développés par les « alarmistes » (absence de point chaud dans la troposphère ; existence d’une pause de réchauffement depuis près de deux décennies)? Quelle est l’importance des erreurs de mesure, de consolidation spatio-temporelle et de celles associées aux algorithmes utilisés dans les modèles climatiques ?
  • Quelle est l’importance des fluctuations naturelles cycliques (mais apériodiques) du climat ? Sont-elles correctement représentées par le concept de « forcing» ?
  • Les méthodes d’extrapolation linéaires utilisées pour identifier un réchauffement climatique (anthropique) sont-elles adaptées aux données climatiques, compte tenu des variations naturelles cycliques ?
  • Les méthodes d’analyse harmonique (spectre de puissance, transformée de Fourier, scalogrammes, etc.) permettent elles d’identifier avec certitude l’existence de composantes naturelles cycliques mais apériodiques du climat ? Quelles sont les périodes approximatives de ces fluctuations et à quoi seraient-elles dues, en fin de compte ?
  • Le système climatique est –il de nature chaotique (au sens mathématique du terme), ce qui réduirait considérablement son horizon de prédictibilité ?

La présentation faite par Henri Masson à la Contre-Cop 22 qui s’est tenue à Paris, début décembre 2016, sous l’égide de l’Association des Climato-Réalistes, apporte quelques éléments de réponse aux questions regroupées dans cette troisième catégorie.

 

 

 

What is wrong with climate science?

Prof.  W. Happer, Princeton University (January 2017)


What, besides the bias toward a particular, desired result, is wrong with the science? Scientific progress proceeds by the interplay of theory and observation. Theory explains observations and makes predictions about what will be observed in the future. Observations anchor our understanding and weed out the theories that do not work. This has been the scientific method for more than three hundred years. Recently, the advent of the computer has made possible another branch of inquiry: computer simulation models. Properly used, computer models can enhance and speed up scientific progress. But they are not meant to replace theory and observation and to serve as an authority of their own. We know they fail in economics.

….

Excellente synthèse des problèmes liés à la controverse actuelle.

The Atmospheric Temperature Pause

The December 2016 global temperature anomaly from the average of two analysis is 0.20 °C above the average of 1981 – 2010. The large El Niño event is over and we wait to see if it will be followed by a La Niña event. The satellite measured temperature of the lower troposphere to the end of 2016 from the average of the University of Alabama in Huntsville and Remote Sensing Systems analysis is here. The temperature trend from December 1997 to December 2016 is 0.045 ± 0.043 °C/decade at the 95% confidence interval. The slope could be as low as 0.002 °C/decade. According to the satellite data, 2016 was a statistically insignificant 0.02 °C warmer than 1998, which was another strong El Niño year.

 

 

  1. See also : Earth Cooling At The Fatest Rate On Record
  2. See also : Berkeley Earth -‘record temperature in 2016 appears to come from a strong El Nino’
  3. See also : 2016 Global Temperature, the Pause Never Went Away
  4. See also : What they don’t say about ‘the hottest ever year’ – 20 year warming trend is one third of what models predicted
  5. See also : Smoking Gun of Fraud by NASA and G. Schmidt

Les États-Unis, exportateurs nets d’énergie en 2026 ?

L’EIA américaine a publié la semaine dernière ses dernières projections portant sur le mix énergétique des États-Unis d’ici à 2040. Présentation de quelques grandes tendances annoncées, à moins de 10 jours de l’investiture de Donald Trump outre-Atlantique.

Egalement: Les États-Unis restent un « ogre » pétrolier en 2015

Egalement : Les chiffres clés du pétrole et du gaz naturel en 2014 (données les plus récentes).

La géologie, une science plus que passionnante … et diverse