The world’s energy needs continue to grow, but many millions are left behind

World Energy Outlook 2016 IEA, March 16, 2017

Executive summary


In our main scenario, a 30% rise in global energy demand to 2040 means an increase in consump on for all modern fuels, but the global aggregates mask a mul tude of diverse trends and signi cant switching between fuels. Moreover, hundreds of millions of people are s ll le in 2040 without basic energy services. Globally, renewable energy – the subject of an in-depth focus in WEO-2016 – sees by far the fastest growth. Natural gas fares best among the fossil fuels, with consump on rising by 50%. Growth in oil demand slows over the projec on period, but tops 103 million barrels per day (mb/d) by 2040. Coal use is hit hard by environmental concerns and, a er the rapid expansion of recent years, growth essen ally grinds to a halt. The increase in nuclear output is spurred mainly by deployment in China.

Ice age thermostat prevented extreme climate cooling

Universitat Autònoma de Barcelona, March 14, 2017
from E. D. Galbraith, S. EgglestonA lower limit to atmospheric CO2 concentrations over the past 800,000 yearsNature Geoscience, 2017


During the ice ages, an unidentified regulatory mechanism prevented atmospheric carbon dioxide concentrations from falling below a level that could have led to runaway cooling, reports a team of researchers. The study suggests the mechanism may have involved the biosphere, as plants and plankton struggled to grow under very low carbon dioxide levels.

The second shale revolution

by Nick Butler, March 13, 2017


After the dip last year, production of oil from shale rocks in the US is increasing again. Estimates for this year range from a net increase of between 400,000 and 800,000 b/d. And 2017 is not a one-off year. The Permian Basin in Texas — the main focus for the new activity — has oil reserves that exceed those of all the largest discovered fields globally, such as Ghawar in Saudi Arabia and Prudhoe Bay in Alaska

Oil below $50: OPEC’s production cap plan is backfiring as U.S. shale enters ‘near nirvana’

by Jesse Snyder, March 10, 2017


Vicky Hollub, the CEO of Occidental Petroleum Corp., speculated that Permian production could in coming years reach as high as four or five million barrels per day, up from around 2.2 million bpd today.

A confluence of factors has created “near nirvana” for the U.S. shale industry, analysts at Citi Group said in a recent research note. Among those factors was the OPEC-led agreement to curb oil supplies in an attempt to lift prices.

Country Analysis Brief: Australia

by U.S. Energy Information Administration, update March 7, 2017


Australia, rich in hydrocarbons and uranium resources, was the world’s largest coal exporter in 2015 and the second-largest liquefied natural gas (LNG) exporter in 2015.

Australia is rich in commodities, including fossil fuel and uranium reserves, and is one of the few countries belonging to the Organization for Economic Cooperation and Development (OECD) that is a significant net energy exporter. Australia sent about 68% of its total energy production (includes uranium exports and excludes total energy imports) overseas in fiscal year 2015 (July 2014—June 2015), according to data from the Australian government

Interview : les sables bitumineux au Canada

par Peter Budgell, 12 février 2016


Si le Canada est le 5e producteur mondial de pétrole (derrière les États-Unis, l’Arabie saoudite, la Russie et la Chine), il le doit à ses gisements de sables bitumineux qui le placent au 3e rang en matière de réserves prouvées (derrière le Venezuela et l’Arabie saoudite). Face à la chute des cours du brut, l’Alberta est toutefois en difficultés et le Premier ministre canadien Justin Trudeau a récemment annoncé une aide financière pour relancer l’économie de cette province pétrolière. Les sables bitumineux sont d’autre part montrés du doigt en raison de leur impact environnemental. Quel sera l’avenir de ces ressources ?

Egalement : les ressources naturelles sont-elles inépuisables?

California Megaflood: Lessons from a Forgotten Catastrophe

by B. Lynn Ingram, January 1, 2013


 43-day storm that began in December 1861 put central and southern California underwater for up to six months, and it could happen again

Geologic evidence shows that truly massive floods, caused by rainfall alone, have occurred in California every 100 to 200 years. Such floods are likely caused by atmospheric rivers: narrow bands of water vapor about a mile above the ocean that extend for thousands of kilometers.

Vision, not limbs, led fish onto land 385 million years ago

through ScienceDaily, March 7, 2017

A new study suggests it was the power of the eyes and not the limbs that first led our aquatic ancestors to make the leap from water to land. The researchers discovered that eyes nearly tripled in size before — not after — the water-to-land transition. Crocodile-like animals saw easy meals on land and then evolved limbs that enabled them to get there, the researchers argue.

Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

by Björn Baresel et al., March 6, 2017, Nature


Since the early days of stratigraphy, mass extinctions were noticed to coincide with major and global sea-level changes1,2 that significantly alter extinction patterns and time-series of geochemical proxies. In the case of the Permian-Triassic boundary mass extinction (PTBME), the system boundary itself has been initially placed during a global eustatic regression3, but was subsequently placed during a global transgression4 …

Shock finding : P-T mass extinction was due to an ice age, and not to warming

Geologic Evidence of Recurring Climate Cycles and Their Implications for the Cause of Global Climate Changes. The Past is the Key to the Future

Don J. Easterbrook, 2011

Department of Geology, Western Washington University, Bellingham, WA 98225, USA


Temperatures have risen approximately a degree or so per century since the coldest part of the Little Ice Age ~500 years ago, but the rise has not been linear. Global temperatures have warmed and cooled many times in 25-35-year cycles, well before the atmospheric CO2 began to rise significantly.

Two episodes of global warming and two episodes of global cooling occurred during the 20th century (Fig. 1). Overall, temperatures during the century rose about the same as the rate of warming per century since the Little Ice Age 500 years ago.

World’s oldest fossils unearthed

by University College London, March 1, 2017


Remains of microorganisms at least 3,770 million years old have been discovered by an international team led by UCL scientists, providing direct evidence of one of the oldest life forms on Earth.

Tiny filaments and tubes formed by bacteria that lived on iron were found encased in quartz layers in the Nuvvuagittuq Supracrustal Belt (NSB), Quebec, Canada.

The NSB contains some of the oldest sedimentary rocks known on Earth which likely formed part of an iron-rich deep-sea hydrothermal vent system that provided a habitat for Earth’s first life forms between 3,770 and 4,300 million years ago …

Scrutinizing the carbon cycle and CO2 residence time in the atmosphere

by Hermann Harde, Global and Planetary Change, 24 February 2017


Highlights

An alternative carbon cycle is presented in agreement with the carbon 14 decay.

The CO2 uptake rate scales proportional to the COconcentration.

Temperature dependent natural emission and absorption rates are considered.

The average residence time of CO2 in the atmosphere is found to be 4 years.

Paleoclimatic CO2 variations and the actual CO2 growth rate are well-reproduced.

The anthropogenic fraction of CO2 in the atmosphere is only 4.3%.

Human emissions only contribute 15% to the CO2 increase over the Industrial Era.

Also this link

Diamond’s 2-billion-year growth charts tectonic shift in early Earth’s carbon cycle

Science Daily, February 23, 2017


A study of tiny mineral ‘inclusions’ within diamonds from Botswana has shown that diamond crystals can take billions of years to grow. One diamond was found to contain silicate material that formed 2.3 billion years ago in its interior and a 250 million-year-old garnet crystal towards its outer rim, the largest age range ever detected in a single specimen. Analysis of the inclusions also suggests that the way that carbon is exchanged and deposited between the atmosphere, biosphere, oceans and geosphere may have changed significantly over the past 2.5 billion years.

S. Timmerman, J.M. Koornneef, I.L. Chinn, G.R. Davies. Dated eclogitic diamond growth zones reveal variable recycling of crustal carbon through timeEarth and Planetary Science Letters, 2017; 463: 178 DOI: 10.1016/j.epsl.2017.02.001

Baffin Bay and Kane Basin polar bears not ‘declining’ concludes new report

by Polar Bear Science, February 15, 2017


The 2016 Scientific Working Group report on Baffin Bay and Kane Basin polar bears was released online without fanfare last week, confirming what local Inuit have been saying for years: contrary to the assertions of Polar Bear Specialist Group scientists, Baffin Bay and Kane Basin subpopulations have not been declining but are stable.

Combien y a-t-il de continents sur Terre ? 7 avec Zealandia !

par Christophe Magdelaine, 20 février 2017


Savez-vous combien y a-t-il de continents sur Terre ? 5 ou 6 ? Alors que la question divise encore certaines personnes, un nouveau continent caché en partie sous l'océan Pacifique vient d'être confirmé par une équipe de scientifiques après des dizaines d'années de recherche. Le 7e continent : Zealandia est maintenant officiellement reconnu.
Source : notre-planete.info, http://www.notre-planete.info/actualites/4586-nombre-continents-Terre-Zealandia

Climate models for the layman

by Judith Curry, Feb 2017


Professor Judith A. Curry is the author of over 180 scienti c papers on weather and climate and is a recipient of the Henry G. Houghton Research Award from the Amer- ican Meteorological Society in 1992. She recently retired from the Georgia Institute of Technology, where she held the positions of Professor and Chair of the School of Earth and Atmospheric Sciences. She is currently President of Climate Forecast Appli- cations Network.

Oil – Where did it come from?

by David Middleton, petroleum geologist/geophysicist,  February 18, 2017


As the biomass is buried more deeply in the sedimentary column, increasing pressure compacts it, increasing temperature cooks it and over time, the hydrocarbons slowly migrate toward the surface because they are less dense than connate/formation water. The kerogen first cooks to heavy oil, then light oil, then wet thermogenic gas, then thermogenic light gas, then high temperature methane…

Oil – Will we run out?

By Andy May, February 17, 2017


In November, 2016 the USGS (United States Geological Survey) reported their assessment of the recent discovery of 20 billion barrels of oil equivalent (technically recoverable) in the Midland Basin of West Texas. About the same time IHS researcher Peter Blomquist published an estimate of 35 billion barrels. Compare these estimates with Ghawar Field in Saudi Arabia, the largest conventional oil field in the world, which contained 80 billion barrels when discovered. There is an old saying in the oil and gas exploration business “big discoveries get bigger and small discoveries get smaller.” …

Scientists uncover huge reservoir of melting carbon under Western United States

by Saswata Hier-Majumder et al., February 2017

Pervasive upper mantle melting beneath the western US, Earth and Planetary Science Letters (2017). DOI: 10.1016/j.epsl.2016.12.041


New research published in Earth and Planetary Science Letters describes how scientists have used the world’s largest array of seismic sensors to map a deep-Earth area of melting carbon covering 1.8 million square kilometres. Situated under the Western US, 350km beneath the Earth’s surface, the discovered melting region challenges accepted understanding of how much carbon the Earth contains – much more than previously understood …
Read more at: https://phys.org/news/2017-02-scientists-uncover-huge-reservoir-carbon.html#jCp

La géologie, une science plus que passionnante … et diverse